Measuring nanoparticles made easy.

Partector – Nanoparticle Dosimeter
The world's smallest nanoparticle detector, ideal for applications such as personal exposure monitoring, workplace surveillance and ambient monitoring. Lightweight, simple to use, no working fluid necessary, 12 hours of battery life.

Partector – TEM sampler
Sample nanoparticles directly to a TEM grid. The Partector TEM sampler determines the necessary sampling time for optimal grid coverage through its online nanoparticle measurement, so you never get bad TEM samples any more.

Learn more
More applications and full instrument specifications are available on our website.

www.naneos.ch
AAAR 33RD ANNUAL CONFERENCE
October 20-24, 2014
Orlando, FL

AAAR Headquarters
1120 Route 73, Suite 200
Mount Laurel, NJ 08054
Phone: (856) 439-9080
Fax: (856) 439-0525
E-mail: info@aaar.org
Web site: www.aaar.org

TABLE OF CONTENTS
AAAR Conference Sponsors ...4
Important Conference Information ..5
AAAR Committees and Technical Committees Meetings Schedule ...10
AAAR Board of Directors and Staff ...12
2014 Student Travel Grant Winners ..14
2014 Student Assistants ..15
Schedule-at-a-Glance ...17
Tutorials ...29
Plenary Lectures ...42
Special Symposia ..47
Exhibitor Listing ...51
Technical Program ..61
Author Index ..152
AAAR Awards Presentation Schedule221
Future Meetings ...221
Supporting, Young Investigators Event and Student Poster Awards Sponsor

Nucleation and Biomass Burning Special Symposia Sponsor

Bronze Sponsor

Student Travel Support

AEESP Lecture Sponsor

Institute for a Sustainable Environment

at Clarkson University
IMPORTANT CONFERENCE INFORMATION

REGISTRATION HOURS

<table>
<thead>
<tr>
<th>Date</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, October 19</td>
<td>6:00 PM – 9:00 PM</td>
</tr>
<tr>
<td>Monday, October 20</td>
<td>7:00 AM – 6:00 PM</td>
</tr>
<tr>
<td>Tuesday, October 21</td>
<td>7:00 AM – 7:00 PM</td>
</tr>
<tr>
<td>Wednesday, October 22</td>
<td>7:00 AM – 6:00 PM</td>
</tr>
<tr>
<td>Thursday, October 23</td>
<td>7:00 AM – 6:00 PM</td>
</tr>
<tr>
<td>Friday, October 24</td>
<td>7:00 AM – 11:00 AM</td>
</tr>
</tbody>
</table>

EXHIBIT HOURS

<table>
<thead>
<tr>
<th>Date</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, October 20</td>
<td>12:00 PM – 5:00 PM (Set-up)</td>
</tr>
<tr>
<td>Tuesday, October 21</td>
<td>9:00 AM – 4:00 PM (Welcome Reception) 6:00 PM – 8:00 PM</td>
</tr>
<tr>
<td>Wednesday, October 22</td>
<td>9:00 AM – 5:00 PM</td>
</tr>
<tr>
<td>Thursday, October 23</td>
<td>9:00 AM – 3:30 PM 3:30 PM – 7:00 PM (Move-out)</td>
</tr>
</tbody>
</table>

PLATFORM SESSIONS

A platform session is based on a submitted and approved abstract. Each oral presentation is limited to 15 minutes, including time for questions and should be accompanied by PowerPoint visuals. No other visual equipment will be provided. There will be a presentation preview/speaker ready room in Wekiwa 1 at Rosen Shingle Creek. All speakers must visit the speaker ready room the day prior to their presentation to load their PowerPoint file onto the conference computer system.
POSTER SESSIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, October 20</td>
<td>2:00 PM – 5:00 PM</td>
<td>(Set-up)</td>
</tr>
<tr>
<td>Tuesday, October 21</td>
<td>9:00 AM – 12:00 PM</td>
<td>(Set-up)</td>
</tr>
<tr>
<td>Poster Session 2</td>
<td>1:00 PM – 3:00 PM</td>
<td></td>
</tr>
<tr>
<td>Thursday, October 23</td>
<td>9:00 AM – 3:30 PM</td>
<td>(Exhibit Hall open)</td>
</tr>
<tr>
<td>Poster Session 8</td>
<td>12:15 PM – 1:45 PM</td>
<td>3:30 PM – 4:00 PM</td>
</tr>
</tbody>
</table>

A poster in the poster session is based on a submitted and approved abstract. The size of a poster cannot exceed 45" wide by 45" tall. Posters will be located in Panzacola F/G. There are two poster sessions during which authors will present their posters in the scheduled sessions and will be available for discussions. Posters are available for viewing throughout the conference at the times indicated below.

POSTER VIEWING TIMES

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, October 21</td>
<td>9:00 AM – 4:00 PM</td>
</tr>
<tr>
<td></td>
<td>6:00 PM – 8:00 PM</td>
</tr>
<tr>
<td>Poster Session 2</td>
<td>1:00 PM – 3:00 PM</td>
</tr>
<tr>
<td>Welcome Reception</td>
<td>6:00 PM – 8:00 PM</td>
</tr>
<tr>
<td>Wednesday, October 22</td>
<td>9:00 AM – 5:00 PM</td>
</tr>
<tr>
<td>Thursday, October 23</td>
<td>9:00 AM – 3:30 PM</td>
</tr>
<tr>
<td>Poster Session 8</td>
<td>12:15 PM – 1:45 PM</td>
</tr>
</tbody>
</table>

INSTRUCTIONS TO POSTER PRESENTERS

Posters should be placed on the assigned display boards between the hours of 2:00 PM – 5:00 PM on Monday, October 20 or between 9:00 AM – 12:00 PM on Tuesday, October 21. They should be removed at 3:30 PM and no later than 4:00 PM on Thursday, October 23. All posters not removed by 4:00 PM on Thursday will be discarded.
WELCOME RECEPTION
Tuesday, October 21..6:00 PM – 8:00 PM
This is your opportunity to meet and greet the exhibitors. Representatives from well-known and respected corporations are happy to discuss their products and talk with you about the latest in aerosol technology and advances in the field. The reception will be held in Panzacola F/G.

AAAR ANNUAL BUSINESS MEETING
Wednesday, October 226:00 PM – 7:00 PM
This year the Annual Business Meeting takes place on Wednesday, October 22 from 6:00 PM – 7:00 PM. This important session provides an overview of the highlights of AAAR today and tomorrow. During this meeting, the ceremonial passing of the gavel will mark the transfer of leadership responsibility from Barbara Wyslouzil to incoming president Jay Turner.

WORKING GROUP MEETINGS
Working Group Meetings 1
Tuesday, October 21 5:00 PM – 6:00 PM
Working Group Meetings 2
Wednesday, October 22 5:00 PM – 6:00 PM
Working Groups play key roles in planning the technical content of future AAAR conferences. Working Group Meetings will take place on Tuesday, October 21 and Wednesday, October 22. All AAAR members and students are encouraged to attend Working Group Meeting(s) corresponding to their research interests. Please refer to the Schedule-at-a-Glance for topics and specific meeting times.

AMERICANS WITH DISABILITIES ACT (ADA) ACCOMMODATIONS
AAAR will use its best efforts to provide reasonable accommodations for attendees with disabilities. Please contact the registration manager at the AAAR Registration Desk if you need assistance.
CM POINTS –
American Board of Industrial Hygiene

The CM point approval process for Category 4 education events has been discontinued. Diplomates determine their own CM credit. All affected CM documents were updated. (Dec 2011-Feb 2012).

For more information on the American Board of Industrial Hygiene and CM points, please visit www.abih.org.

AWARD PRESENTATIONS

Join us in honoring the recipients of the following awards, which will be presented immediately after each plenary session: Kenneth T. Whitby Award, David Sinclair Award, Thomas T. Mercer Joint Prize, and Sheldon K. Friedlander Award. Please refer to the Schedule-at-a-Glance for the specific award presentation times.

FELLOWS and STUDENT POSTER AWARDS

The newly appointed AAAR Fellows will be recognized on Wednesday, October 22 at 8:00 AM in the plenary session which will be held in Panzacola H 1-3. In addition, the student poster awards will be presented on Friday, October 24 at 8:00 AM in Panzacola H 1-3.

SPEAKER READY ROOM

There will be a presentation preview/speaker ready room in Wekiwa 1 at Rosen Shingle Creek. All speakers must visit the speaker ready room the day prior to their presentation. There will be a technician in the room to assist with presentations. Please note: LCD projectors are the only form of visual equipment that will be provided. Use of your personal computer will not be permitted.

SPEAKER READY ROOM HOURS

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, October 19</td>
<td>6:00 PM – 9:00 PM</td>
</tr>
<tr>
<td>Monday, October 20</td>
<td>7:00 AM – 6:00 PM</td>
</tr>
<tr>
<td>Tuesday, October 21</td>
<td>7:00 AM – 7:00 PM</td>
</tr>
<tr>
<td>Wednesday, October 22</td>
<td>7:00 AM – 6:00 PM</td>
</tr>
<tr>
<td>Thursday, October 23</td>
<td>7:00 AM – 6:00 PM</td>
</tr>
<tr>
<td>Friday, October 24</td>
<td>7:00 AM – 10:00 AM</td>
</tr>
</tbody>
</table>
HOTEL AND CONFERENCE VENUE INFORMATION

Hotel
Rosen Shingle Creek
9939 Universal Boulevard
Orlando, FL 32819
Telephone: 407-996-9939

All scientific sessions, food and beverage events, exhibits, and registration will be located at Rosen Shingle Creek.

ON-SITE MEAL AND SNACK OPTIONS

Food options within Rosen Shingle Creek include Café Osceola (serving breakfast, lunch and dinner and offering both buffet and a la carte options); 18 Monroe Street (a 24-hour deli restaurant); Smooth Java (coffee, smoothies, pastries, light sandwiches); Cala Bella (Italian bistro); Tobias Flats and Watering Hole (flatbread and tapas); Banrai Sushi (sushi, signature rolls, sakes). In addition, there is dining by the pool and at the golf course plus several bars located throughout the property.

AAAR will provide a box lunch for all attendees on Thursday, October 23 in the exhibit hall prior to the Thursday poster session.

Rosen Shingle Creek will offer a CASH and CARRY option for AAAR attendees on Tuesday, October 21.
CONFERENCE COMMITTEE

Athanasios Nenes
2014 Conference Chair

Andrea Ferro
2015 Conference Chair

Mark Swihart
2016 Conference Chair

Jay Turner
Development Committee Chair

Brian Osmondson
Exhibits Chair

Chris Sorensen
Tutorial Chair

Chris Hogan
Young Investigators Committee Chair

Donald Dabdub
Abstracts

TECHNICAL PROGRAM COMMITTEE

Lea Hildebrandt Ruiz
Aerosol Chemistry

Rajan Chakrabarty
Aerosol Physics

Paul Solomon
Atmospheric Aerosols

Alex Huffman
Bioaerosols

Matti Maricq
Combustion and Material Synthesis

Antonio Miguel
Control Technology

Patrick O’Shaughnessy
Health Related Aerosols

David Ensor
History of Aerosol Science

Tiina Reponen
Indoor Aerosols and Aerosol Exposure

Brent Williams
Instrumentation
COMMITTEE MEETINGS

<table>
<thead>
<tr>
<th>Committee</th>
<th>Day/Date</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWARDS</td>
<td>Thursday, October 23</td>
<td>5:00 PM – 6:00 PM</td>
<td>Wekiwa 2</td>
</tr>
<tr>
<td>CONFERENCE</td>
<td>Wednesday, October 22</td>
<td>12:00 PM – 1:00 PM</td>
<td>Wekiwa 2</td>
</tr>
<tr>
<td>DEVELOPMENT</td>
<td>Wednesday, October 22</td>
<td>7:00 AM – 8:00 AM</td>
<td>Wekiwa 2</td>
</tr>
<tr>
<td>EDUCATION</td>
<td>Thursday, October 23</td>
<td>12:00 PM – 1:00 PM</td>
<td>Wekiwa 2</td>
</tr>
<tr>
<td>ENDOWMENT</td>
<td>Tuesday, October 21</td>
<td>7:00 AM – 8:00 AM</td>
<td>Wekiwa 2</td>
</tr>
<tr>
<td>FINANCE</td>
<td>Wednesday, October 22</td>
<td>12:00 PM – 1:00 PM</td>
<td>Wekiwa 3</td>
</tr>
<tr>
<td>INTERNET COMMUNICATIONS</td>
<td>Thursday, October 23</td>
<td>7:00 AM – 8:00 AM</td>
<td>Wekiwa 2</td>
</tr>
<tr>
<td>LONG RANGE PLANNING</td>
<td>Thursday, October 23</td>
<td>7:00 AM – 8:00 AM</td>
<td>Wekiwa 3</td>
</tr>
<tr>
<td>MEMBERSHIP</td>
<td>Thursday, October 23</td>
<td>12:00 PM – 1:00 PM</td>
<td>Wekiwa 3</td>
</tr>
<tr>
<td>NEWSLETTER</td>
<td>Wednesday, October 22</td>
<td>12:00 PM – 1:00 PM</td>
<td>Wekiwa 9</td>
</tr>
<tr>
<td>ONLINE EDUCATION TASK FORCE</td>
<td>Thursday, October 23</td>
<td>5:00 PM – 6:00 PM</td>
<td>Wekiwa 3</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>Wednesday, October 22</td>
<td>7:00 AM – 8:00 AM</td>
<td>Wekiwa 3</td>
</tr>
<tr>
<td>YOUNG INVESTIGATORS</td>
<td>Tuesday, October 21</td>
<td>7:00 AM – 8:00 AM</td>
<td>Wekiwa 3</td>
</tr>
</tbody>
</table>

WORKING GROUP CHAIRS

<table>
<thead>
<tr>
<th>Committee</th>
<th>Day/Date</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 Strategy</td>
<td>Tuesday, October 21</td>
<td>12:00 PM – 1:00 PM</td>
<td>Wekiwa 3</td>
</tr>
<tr>
<td>2015 Technical Program</td>
<td>Thursday, October 23</td>
<td>5:00 PM – 6:00 PM</td>
<td>Wekiwa 4</td>
</tr>
</tbody>
</table>

These meetings are for committee members and individuals invited by the committee chair.
2013-2014 BOARD OF DIRECTORS

Barbara Wyslouzil
President

Jay Turner
Vice President

Sheryl Ehrman
Vice President Elect

Lynn Russell
Treasurer

Linsey Marr
Treasurer Elect

Suresh Dhaniyala
Secretary

Barbara Turpin
Immediate Past President (Ex-officio)

Directors
Kelley Barsanti
Deborah Gross
Scot Martin
V. Faye McNeill
Hans Moosmuller
Sergey Nizkorodov
Ilona Riipinen
Jacky Rosati Rowe
Leah Williams

AAAR STAFF

Melissa Baldwin
Executive Director

Alicea Coccellato
Administrative Assistant

Ann Mitchell
Meeting/Exhibits Manager

Caroline Olson
Assistant Meeting/Registration Manager
Organizational Members

Magee Scientific
1916A M. L. King Jr. Way
Berkeley, CA 94704
www.mageescientific.com

MSP Corporation
5910 Rice Creek Parkway
Suite 300
Shoreview, MN 55126
www.mspcorp.com

Particle Instruments, LLC
1048 Centerville Circle
Vadnais Heights, MN 55127
www.particleinstruments.com

TSI Incorporated
500 Cardigan Road
Shoreview, MN 55126
www.tsi.com
2014 STUDENT TRAVEL GRANT WINNERS

AAAR Travel Grant Winner

Sascha Schiller, University of Paderborn - Germany

DOE Travel Grant Winners

Wyatt Champion, University of Colorado Boulder
Coty Jen, University of Minnesota - Twin Cities
Sambhav Kumbhani, Brigham Young University
Peng Liu, Georgia Institute of Technology
Manasi Mahish, Texas A&M University
Sameer Patel, Washington University in St Louis
Kim Sakamoto, Colorado State University
Uma Shankar, University of North Carolina at Chapel Hill
Robin Stevens, Dalhousie University
Ryan Thompson, University of Illinois at Urbana-Champaign
Shan Zhou, University of California, Davis

NASA Travel Grant Winners

Maiko Arashiro, University of North Carolina at Chapel Hill
Parham Azimi, Illinois Institute of Technology
Robert Bullard, University of Iowa
Jiaxi Fang, Washington University in St Louis
Stephen Feinberg, Washington University in St. Louis
Amanda Grantz, California Institute of Technology
Rui Li, University of Colorado at Boulder
Jack Lin, Georgia Institute of Technology
Dhruv Mitroo, Washington University in St. Louis
Thien Khoi Nguyen, Rutgers University
Kyle Pierce, University of Denver
Derek Price, University of California, Riverside
Joel Ramirez, University of Iowa
Dian Romonosky, University of California, Irvine
Antonios Tasoglou, Carnegie Mellon University
Jennifer Therkorn, Rutgers University
Diep Vu, University of California, Riverside
Hsi-Wei Yeh, Virginia Commonwealth University
Xuan Zhang, California Institute of Technology
2014 STUDENT ASSISTANTS
AAAR would like to acknowledge the 2014 Student Assistant Volunteers.

Andrew Amaya
Christopher Boyd
Ramin Dastanpour
Julia DeGagne
Ashley Evanoski-Cole
Stephen Feinberg
Matthew Gunsch
Lucas Henneman
Cecilia Leoni
Viraj Modak
Arnaldo Negron Marty
Yao Nie
Provat Saha
Hongru Shen
Yang Wang
Lu Xu
Jing Yan
Caiqing Yan
DATES AND TIMES OF 2014 SPECIAL SYMPOSIA

TITLE: Linking Aerosols with Public Health in a Changing World

<table>
<thead>
<tr>
<th>DAY</th>
<th>SESSION</th>
<th>TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>2</td>
<td>1:00 PM – 3:00 PM</td>
<td>Panzacola F/G</td>
</tr>
<tr>
<td>Wednesday</td>
<td>5</td>
<td>1:00 PM – 3:00 PM</td>
<td>Sebastian I 4</td>
</tr>
<tr>
<td>Wednesday</td>
<td>6</td>
<td>3:30 PM – 5:00 PM</td>
<td>Sebastian I 4</td>
</tr>
<tr>
<td>Thursday</td>
<td>8</td>
<td>12:15 PM – 1:45 PM</td>
<td>Panzacola F/G</td>
</tr>
<tr>
<td>Thursday</td>
<td>9</td>
<td>1:45 PM – 3:00 PM</td>
<td>Sebastian I 2</td>
</tr>
</tbody>
</table>

TITLE: Biomass Burning Aerosol: From Emissions to Impacts

<table>
<thead>
<tr>
<th>DAY</th>
<th>SESSION</th>
<th>TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>2</td>
<td>1:00 PM – 3:00 PM</td>
<td>Panzacola F/G</td>
</tr>
<tr>
<td>Wednesday</td>
<td>5</td>
<td>1:00 PM – 3:00 PM</td>
<td>Sebastian I 2</td>
</tr>
<tr>
<td>Wednesday</td>
<td>6</td>
<td>3:30 PM – 5:00 PM</td>
<td>Sebastian I 2</td>
</tr>
<tr>
<td>Thursday</td>
<td>7</td>
<td>9:45 AM – 11:30 AM</td>
<td>Sebastian I 2</td>
</tr>
<tr>
<td>Thursday</td>
<td>8</td>
<td>12:15 PM – 1:45 PM</td>
<td>Panzacola F/G</td>
</tr>
<tr>
<td>Thursday</td>
<td>10</td>
<td>3:30 PM – 5:00 PM</td>
<td>Sebastian I 2</td>
</tr>
</tbody>
</table>

TITLE: Aerosol Sources from Emerging Energy Technologies and Production

<table>
<thead>
<tr>
<th>DAY</th>
<th>SESSION</th>
<th>TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td>6</td>
<td>3:30 PM – 5:00 PM</td>
<td>Sebastian I 3</td>
</tr>
<tr>
<td>Thursday</td>
<td>8</td>
<td>12:15 PM – 1:45 PM</td>
<td>Panzacola F/G</td>
</tr>
</tbody>
</table>

TITLE: Air Quality and Climate in the Southeast US: Insights from Recent Measurement Campaigns

<table>
<thead>
<tr>
<th>DAY</th>
<th>SESSION</th>
<th>TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>2</td>
<td>1:00 PM – 3:00 PM</td>
<td>Panzacola F/G</td>
</tr>
<tr>
<td>Wednesday</td>
<td>4</td>
<td>9:45 AM – 11:30 AM</td>
<td>Sebastian I 1</td>
</tr>
<tr>
<td>Wednesday</td>
<td>5</td>
<td>1:00 PM – 3:00 PM</td>
<td>Sebastian I 1</td>
</tr>
<tr>
<td>Wednesday</td>
<td>6</td>
<td>3:30 PM – 5:00 PM</td>
<td>Sebastian I 1</td>
</tr>
<tr>
<td>Thursday</td>
<td>7</td>
<td>9:45AM – 11:30 AM</td>
<td>Sebastian I 1</td>
</tr>
<tr>
<td>Thursday</td>
<td>8</td>
<td>12:15 PM – 1:45 PM</td>
<td>Panzacola F/G</td>
</tr>
</tbody>
</table>

TITLE: Advances in the Physics and Chemistry of New Particle Formation and Growth

<table>
<thead>
<tr>
<th>DAY</th>
<th>SESSION</th>
<th>TIME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>2</td>
<td>1:00 – 3:00 PM</td>
<td>Panzacola F/G</td>
</tr>
<tr>
<td>Tuesday</td>
<td>3</td>
<td>3:30 PM – 5:00 PM</td>
<td>Panzacola H 4</td>
</tr>
<tr>
<td>Thursday</td>
<td>7</td>
<td>9:45 AM – 11:30 AM</td>
<td>Panzacola H 4</td>
</tr>
<tr>
<td>Thursday</td>
<td>9</td>
<td>1:45 PM – 3:00 PM</td>
<td>Panzacola H 4</td>
</tr>
</tbody>
</table>
NOTE THAT ALL CONFERENCE SESSIONS WILL BE HELD AT ROSEN SHINGLE CREEK.

Sunday, October 19

6:00 PM – 9:00 PM
AAAR Registration
Panzacola Registration

6:00 PM – 9:00 PM
Speaker Ready Room
Wekiwa 1

7:30 PM – 8:30 PM
Student Assistant Orientation
Wekiwa 2

Monday, October 20

7:00 AM – 6:00 PM
AAAR Registration
Panzacola Registration

7:00 AM – 6:00 PM
Speaker Ready Room
Wekiwa 1

8:00 AM – 9:40 AM
First Tutorial Session

1. **Introduction to Aerosols 1: Particle Aerodynamics, Diffusion, and Size Measurement**
 Richard Flagan
 Sebastian I 1

2. **Field and Mobile Atmospheric Aerosol Measurement Principle and Practice**
 Charles Brock
 Sebastian I 2

3. **Micro and Nanoparticle Synthesis**
 Sheryl Ehrman
 Sebastian I 3

4. **Biomarkers of Air Pollution Exposure**
 Roby Greenwald
 Sebastian I 4

10:00 AM – 11:40 AM
Second Tutorial Session

5. **Introduction to Aerosols 2: The Particle Size Distribution and its Dynamics**
 Richard Flagan
 Sebastian I 1

6. **Hands-On Aerosol Instrumentation Design and Measurement**
 Moderated by: *Tyler Beck*
 Panzacola F/G
7. Stochastic Simulations of Aerosol Dynamics
 Amit Chakrabarti and Chris Hogan
 Sebastian I 2

8. Molecular Biology-Based Aerosol Analyses
 Jordan Peccia
 Sebastian I 3

11:40 AM – 1:00 PM Lunch (on your own)

1:00 PM – 2:40 PM Third Tutorial Session

9. Chemical Characterization of Atmospheric Particles by Off-line Methods of Analysis
 Alexander Laskin
 Sebastian I 1

10. Fires in the Earth System: From Emissions to Impacts
 Christine Wiedinmyer
 Sebastian I 2

11. Advanced Vehicles, Emerging Technologies, and Their Impact on Particulate Emissions
 Kent Johnson
 Sebastian I 3

12. Aerosol Exposure Assessment: Principles and Techniques
 John Volckens
 Sebastian I 4

1:00 PM – 4:00 PM AS&T Editors Meeting
 Wekiwa 2

2:00 PM – 4:30 PM AAAR Executive Committee Meeting
 Wekiwa 3

12:00 PM – 5:00 PM Exhibitor Set-Up
 Panzacola F/G

2:00 PM – 5:00 PM Poster Set-Up
 Panzacola F/G
3:00 PM – 4:40 PM Fourth Tutorial Session
 Alfred Wiedensohler
 Sebastian I 1

14. Environmental Chambers: Approaches and Challenges
 David Cocker
 Sebastian I 2

15. Fuel Combustion and Emission Controls
 Antonio Miguel
 Sebastian I 3

16. New Particle Formation and Growth
 Charles Stanier
 Sebastian I 4

6:00 PM – 7:30 PM Young Investigators Event: Publication and Proposal Preparation Workshop
 Wekiwa 4/5

Tuesday, October 21

7:00 AM – 7:00 PM AAAR Registration
 Panzacola Registration

7:00 AM – 7:00 PM Speaker Ready Room
 Wekiwa 1

7:00 AM – 8:00 AM Endowment Committee Meeting
 Wekiwa 2

7:00 AM – 8:00 AM Young Investigators’ Committee
 Wekiwa 3

8:00 AM – 9:15 AM Plenary Session 1: Can We Tame the Aerosol Uncertainty Monster?
 Ken Carslaw
 Panzacola H 1-3

 Kenneth T. Whitby Award Presentation

9:00 AM – 4:00 PM Exhibits/Posters Open
 Panzacola F/G

9:15 AM – 9:45 AM Coffee Break
 Panzacola F/G
9:45 AM – 11:30 AM Technical Session 1: Platform
 1AC. Aerosol Chemistry
 Panzacola H 1-3
 1AP. Aerosol Physics
 Panzacola H 4
 1CC. Aerosols, Clouds, and Climate
 Sebastian I 1
 1HA. Health Related Aerosols
 Sebastian I 3
 1IA. Indoor Aerosols
 Sebastian I 4
 1UA. Urban Aerosols
 Sebastian I 2

11:30 AM – 1:00 PM Lunch *(on your own)*

11:30 PM – 1:00 PM AAAR Board of Directors Luncheon
 Wekiwa 7

12:00 PM – 1:00 PM Working Group Chairs 2014 Strategy Meeting
 Wekiwa 3

1:00 PM – 3:00 PM Technical Session 2: Poster
 Panzacola F/G
 2AC. Aerosol Chemistry
 2AE. Aerosol Exposure
 2AP. Aerosol Physics
 2AQ. Air Quality and Climate in the Southeast US: Insights from Recent Measurement Campaigns
 2BB. Biomass Burning Aerosol: From Emissions to Impacts
 2CC. Aerosols, Clouds, and Climate
 2CH. Control Technology
 2HA. Health Related Aerosols
 2IA. Indoor Aerosols
 2IM. Instrumentation and Methods
 2NP. Advances in the Physics and Chemistry of New Particle Formation and Growth
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM</td>
<td>Linking Aerosols with Public Health in a Changing World</td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>Urban Aerosols</td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>Coffee Break</td>
<td>Panzacola F/G</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Technical Session 3: Platform</td>
<td></td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Aerosol Chemistry</td>
<td>Panzacola H 1-3</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Exposure</td>
<td>Sebastian I 3</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Aerosols, Clouds, and Climate</td>
<td>Sebastian I 1</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Indoor Aerosols</td>
<td>Sebastian I 4</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Advances in the Physics and Chemistry of New Particle Formation and Growth</td>
<td>Panzacola H 4</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Urban Aerosols</td>
<td>Sebastian I 2</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>Working Group Meetings 1</td>
<td></td>
</tr>
<tr>
<td>5:00 PM</td>
<td>Aerosol Chemistry</td>
<td>Sebastian I 1</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>Combustion and Materials Synthesis</td>
<td>Sebastian I 2</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>History of Aerosol Science</td>
<td>Sebastian I 3</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>Indoor Aerosols and Aerosol Exposure</td>
<td>Sebastian I 4</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>Instrumentation</td>
<td>Panzacola H 4</td>
</tr>
<tr>
<td>6:00 PM</td>
<td>Welcome Reception</td>
<td>Panzacola F/G</td>
</tr>
</tbody>
</table>

Wednesday, October 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>AAAR Registration</td>
<td>Panzacola Registration</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>Speaker Ready Room</td>
<td>Wekiwa 1</td>
</tr>
</tbody>
</table>

www.AAAR.org
7:00 AM – 8:00 AM Development Committee Meeting
Wekiwa 2

7:00 AM – 8:00 AM Publications Committee Meeting
Wekiwa 3

8:00 AM – 9:15 AM Plenary Session 2-AEESP Lecture: Fine Particulate Air Pollution and Human Health: Science, Public Policy, and Controversy
C. Arden Pope, III
Panzacola H 1-3
David Sinclair Award Presentation and Thomas T. Mercer Prize Presentation

9:00 AM – 5:00 PM Exhibits/Posters Open
Panzacola F/G

9:15 AM – 9:45 AM Coffee Break
Panzacola F/G

9:45 AM – 11:30 AM Technical Session 4: Platform
4AC. Aerosol Chemistry
Panzacola H 4

4AP. Aerosol Physics
Sebastian I 4

4AQ. Air Quality and Climate in the Southeast US: Insights from Recent Measurement Campaigns
Sebastian I 1

4HA. Health Related Aerosols
Sebastian I 3

4IM. Instrumentation and Methods
Panzacola H 1-3

4UA. Urban Aerosols
Sebastian I 2

11:30 AM – 1:00 PM Lunch (on your own)

11:30 AM – 1:00 PM AS&T Editorial Advisory Board Luncheon
Wekiwa 4/5

12:00 PM – 1:00 PM Conference Committee Meeting
Wekiwa 2

12:00 PM – 1:00 PM Finance Committee Meeting
Wekiwa 3

12:00 PM – 1:00 PM Newsletter Committee Meeting
Wekiwa 9
1:00 PM – 3:00 PM Technical Session 5: Platform
5AC. Aerosol Chemistry
 Panzacola H 4
5AQ. Air Quality and Climate in the Southeast US: Insights from Recent Measurement Campaigns
 Sebastian I 1
5BB. Biomass Burning Aerosol: From Emissions to Impacts
 Sebastian I 2
5CH. Control Technology
 Sebastian I 3
5IM. Instrumentation and Methods
 Panzacola H 1-3
5PH. Linking Aerosols with Public Health in a Changing World
 Sebastian I 4

3:00 PM – 3:30 PM Coffee Break
 Panzacola F/G

3:30 PM – 5:00 PM Technical Session 6: Platform
6AC. Aerosol Chemistry
 Panzacola H 4
6AQ. Air Quality and Climate in the Southeast US: Insights from Recent Measurement Campaigns
 Sebastian I 1
6BB. Biomass Burning Aerosol: From Emissions to Impacts
 Sebastian I 2
6EP. Aerosol Sources from Emerging Energy Technologies and Production
 Sebastian I 3
6IM. Instrumentation and Methods
 Panzacola H 1-3
6PH. Linking Aerosols with Public Health in a Changing World
 Sebastian I 4

5:00 PM – 6:00 PM Working Group Meetings 2
Aerosol Physics
 Sebastian I 1
Atmospheric Aerosols
Sebastian I 2
Bioaerosols
Sebastian I 3
Control Technology
Sebastian I 4
Health Related Aerosols
Panzacola H 4

6:00 PM – 7:00 PM AAAR Annual Business Meeting
Panzacola H 1-3

Thursday, October 23

7:00 AM – 6:00 PM AAAR Registration
Panzacola Registration

7:00 AM – 6:00 PM Speaker Ready Room
Wekiwa 1

7:00 AM – 8:00 AM Internet Communications Committee Meeting
Wekiwa 2

7:00 AM – 8:00 AM Long Range Planning Committee
Wekiwa 3

8:00 AM – 9:15 AM Plenary Session 3-Friedlander Lecture:
Linking Tailpipe to Ambient: Atmospheric Evolution of Combustion Emissions
Allen L. Robinson
Panzacola H 1-3

Sheldon K. Friedlander Award and AAAR 2014 Fellows Presentation

9:00 AM – 3:30 PM Exhibits/Posters Open
Panzacola F/G

9:15 AM – 9:45 AM Coffee Break
Panzacola F/G

9:45 AM – 11:30 AM Technical Session 7: Platform

7AQ. Air Quality and Climate in the Southeast US: Insights from Recent Measurement Campaigns
Sebastian I 1

7BA. Bioaerosols and Homeland Security
Sebastian I 4
7BB. Biomass Burning Aerosol: From Emissions to Impacts
 Sebastian I

7CA. Carbonaceous Aerosols in the Atmosphere
 Panzacola H 1-3

7NM. Nanoparticles and Materials Synthesis
 Sebastian I

7NP. Advances in the Physics and Chemistry of New Particle Formation and Growth
 Panzacola H 4

11:30 AM – 12:15 PM Light Take-Away Lunch
 Panzacola F/G

12:00 PM – 1:00 PM Education Committee Meeting
 Wekiwa 2

12:00 PM – 1:00 PM Membership Committee Meeting
 Wekiwa 3

12:15 PM – 1:45 PM Technical Session 8: Poster
 Panzacola F/G

8AC. Aerosol Chemistry

8AQ. Air Quality and Climate in the Southeast US: Insights from Recent Measurement Campaigns

8BA. Bioaerosols and Homeland Security

8BB. Biomass Burning Aerosol: From Emissions to Impacts

8CA. Carbonaceous Aerosols in the Atmosphere

8CO. Combustion

8EP. Aerosol Sources from Emerging Energy Technologies and Production

8IM. Instrumentation and Methods

8NM. Nanoparticles and Materials Synthesis

8PH. Linking Aerosols with Public Health in a Changing World
8RA. Remote and Regional Atmospheric Aerosols
8SA. Source Apportionment
8UA. Urban Aerosols

1:45 PM – 3:00 PM
Technical Session 9: Platform
9AC. Aerosol Chemistry
 Sebastian I 4
9BA. Bioaerosols and Homeland Security
 Sebastian I 3
9IM. Instrumentation and Methods
 Panzacola H 1-3
9NP. Advances in the Physics and Chemistry of New Particle Formation and Growth
 Panzacola H 4
9PH. Linking Aerosols with Public Health in a Changing World
 Sebastian I 2
9UA. Urban Aerosols
 Sebastian I 1

3:00 PM – 3:30 PM
Coffee Break
 Panzacola F/G

3:30 PM
Exhibit Hall Closes

3:30 PM – 5:00 PM
Technical Session 10: Platform
10BA. Bioaerosols and Homeland Security
 Sebastian I 3
10BB. Biomass Burning Aerosol: From Emissions to Impacts
 Sebastian I 2
10CA. Carbonaceous Aerosols in the Atmosphere
 Panzacola H 4
10CO. Combustion
 Sebastian I 4
10IM. Instrumentation and Methods
 Panzacola H 1-3
10SA. Source Apportionment
 Sebastian I 1
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00 PM – 6:00 PM</td>
<td>Working Group Chairs 2015 Technical Program Meeting</td>
<td>Wekiwa 4</td>
</tr>
<tr>
<td>5:00 PM – 6:00 PM</td>
<td>Awards Committee Meeting</td>
<td>Wekiwa 2</td>
</tr>
<tr>
<td>5:00 PM – 6:00 PM</td>
<td>Online Education Task Force Meeting</td>
<td>Wekiwa 3</td>
</tr>
</tbody>
</table>

Friday, October 24

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM – 11:00 AM</td>
<td>AAAR Registration</td>
<td>Panzacola Registration</td>
</tr>
<tr>
<td>7:00 AM – 11:00 AM</td>
<td>Speaker Ready Room</td>
<td>Wekiwa 1</td>
</tr>
<tr>
<td>8:00 AM – 9:15 AM</td>
<td>Plenary Session 4: Climate, Biofuel Emissions and the Quest for Relevance</td>
<td>Panzacola H 1-3</td>
</tr>
<tr>
<td>9:15 AM – 9:45 AM</td>
<td>Coffee Break</td>
<td>Panzacola Pre-Function</td>
</tr>
<tr>
<td>9:45 AM – 11:00 AM</td>
<td>Technical Session 11: Platform</td>
<td>Panzacola H 4</td>
</tr>
<tr>
<td>11:00 AM – 11:15 AM</td>
<td>Break (no beverages)</td>
<td></td>
</tr>
</tbody>
</table>
11:15 AM – 12:30 PM Technical Session 12: Platform

12BA. Bioaerosols and Homeland Security
 Panzacola H 1-3

12CA. Carbonaceous Aerosols in the Atmosphere
 Panzacola H 4

12CO. Combustion
 Sebastian I 4

12IM. Instrumentation and Methods
 Sebastian I 1

12RA. Remote and Regional Atmospheric Aerosols
 Sebastian I 3

12SA. Source Apportionment
 Sebastian I 2

12:30 PM Conference Ends

12:30 PM – 4:00 PM AAAR Board of Directors Meeting
 Board Room (Gatlin side)
TUTORIAL 1
INTRODUCTION TO AEROSOLS 1: PARTICLE AERODYNAMICS, DIFFUSION, AND SIZE MEASUREMENT

Richard C. Flagan, Department of Chemical Engineering, California Institute of Technology, Pasadena, CA

Abstract: This tutorial is the first of two that introduce the broad field of aerosol science. We begin with the behavior of individual particles to understand how they behave in the environment and the physical principles on which most aerosol measurements are based. The drag forces that act on a particle determine its settling velocity and whether it is able to follow the flow of a gas. Several different models describe the drag forces: Stokes law applies for spherical particles moving at modest velocities, though a slip correction must be introduced to account for noncontinuum effects for particles small compared to the mean-free-path of the gas molecules. Other corrections are required if the velocity becomes large enough the fluid inertia affects the motion. Knowledge of these scaling principles makes it possible to relate particle behavior in seemingly disparate systems and make it possible to determine particle size. The drag forces also determine Brownian motion, and, hence, affect their deposition and losses in the respiratory tract, in sampling systems and in filters, causing aerosol filtration to be more effective than filtration of particles from liquid media. We will briefly look at how this aerodynamic behavior is employed in determining particle size in a wide range of instruments, including the migration of charged particles in mobility analyzers.

Richard C. Flagan is the Irma and Ross McCollum/William H. Corcoran Professor of Chemical Engineering and Environmental Science and Engineering at the California Institute of Technology. He has served as president of AAAR and editor-in-chief of Aerosol Science and Technology. His research spans the field of aerosol science, including atmospheric aerosols, aerosol instrumentation, aerosol synthesis of nanoparticles and other materials, and bioaerosols. His many contributions to the field of aerosol science have been acknowledged with the Sinclair Award of the AAAR and the Fuchs Award. He is a member of the National Academy of Engineering.
TUTORIAL 2
FIELD AND MOBILE ATMOSPHERIC AEROSOL MEASUREMENT: PRINCIPLE AND PRACTICE
Charles Brock, Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO

Abstract: Studying the atmospheric aerosol often means setting up temporary measurement systems at field sites or sampling from mobile platforms such as vans, aircraft, or ships. Obtaining a representative sample in such conditions can be challenging, to say the least. This tutorial will first discuss how the physics, chemistry and thermodynamics of aerosol particles must be considered when developing a system for quantitative aerosol sampling and measurement. We will then explore practical solutions to common sampling problems, including inlet design for sampling from aircraft, simple techniques to minimize diffusional and inertial particle losses, and approaches to control thermodynamic changes to the aerosol. Next we will discuss how to choose instruments and develop flow and pressure control strategies for sampling in a rapidly changing environment, such as on an aircraft. We’ll finish by discussing data processing issues, such as sample interval and time synchronization, that are commonly found with multi-instrument datasets, are often only an afterthought, and can compromise analysis of the collected dataset. Attendees should leave not only with a checklist of concerns, but with a toolbox of approaches and the confidence to adapt and apply them to their specific circumstances.

Charles Brock is a research physicist at the Earth System Research Laboratory at the National Oceanic and Atmospheric Administration in Boulder, Colorado. Dr. Brock specializes in using in situ measurements of atmospheric aerosol microphysical and optical properties, especially from airborne platforms, to understand aerosol direct and indirect radiative forcing. His expertise in field sampling of aerosols extends from stratospheric measurements on the NASA ER-2 high altitude research aircraft to near-surface observations using a slow-moving elevator platform on a 300-m tower.

TUTORIAL 3
MICRO AND NANOPARTICLE SYNTHESIS
Sheryl Ehrman, University of Maryland, College Park, MD

Abstract: This tutorial will focus on synthesis of micron-sized and nano-sized aerosols with controlled composition and morphology for materials processing applications as well as environmental
health and safety studies. Precursor selection, droplet generation or gas phase delivery methods, choice of reaction environment, and powder collection technologies will be reviewed. Aerosol dynamics involved in gas-to-particle conversion and droplet-to-particle conversion will be described. Upon completion of this tutorial, participants will be able to design a lab scale micro or nanoparticle synthesis process.

Sheryl Ehrman received her BS in chemical engineering from the University of California at Santa Barbara, and her doctorate from UCLA. Since August of 1998 she has been a faculty member in the Chemical and Biomolecular Engineering Department at the University of Maryland, College Park, where she is presently professor and chair of the department. Her current research interests include aerosol synthesis routes to micro and nanostructured materials, interactions between nanoparticles and biological materials, and the formation, characterization and minimization of air pollutants. Prof. Ehrman has been an active member of the American Association for Aerosol Research for over 20 years.

TUTORIAL 4
BIOMARKERS OF AIR POLLUTION EXPOSURE
Roby Greenwald, Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA

Abstract: Exposure to ambient air pollution is associated with a wide variety of chronic and acute health outcomes. Although the precise mechanisms remain unclear, investigation of the biological processes linking exposure to outcomes is currently a very active area of research. An ever-expanding array of biomarkers is being developed to facilitate the examination of intermediate steps in the health response to air pollution. This tutorial will present an overview of biomarkers available for health-related research and will include discussion of biomarkers relevant to all physiological systems. Biomarkers appropriate for human subjects’ research will be emphasized, and ethical issues related to the invasiveness of sample collection will be discussed. The advantages and disadvantages of various biological media (such as plasma, whole blood, dried blood spots, exhaled breath, urine and saliva) and analytical methodologies will be examined.

Roby Greenwald is a research assistant professor in the Rollins School of Public Health at Emory University. He received a PhD in environmental engineering at the Georgia Institute of Technology and completed a post-doc in the Pulmonary, Allergy and Cystic Fibrosis Division of the Emory University Department
of Pediatrics. His current research involves air pollution exposure assessment and health response in panel settings including persons commuting on highways and persons engaged in outdoor physical activity.

Second Session: 10:00 AM – 11:40 PM

TUTORIAL 5

INTRODUCTION TO AEROSOLS 2: THE PARTICLE SIZE DISTRIBUTION AND ITS DYNAMICS

Richard C. Flagan, Department of Chemical Engineering, California Institute of Technology, Pasadena, CA

Abstract: This tutorial continues the basic introduction to aerosol science. In this session we focus on developing the tools to describe the dynamics of aerosol populations. An aerosol is an ensemble of particles in a gas, and the particles are distributed over a range of sizes. Therefore, they must be represented by a particle size distribution. We will discuss the representation of aerosol populations as size distributions, their graphical representation, and models such as the log normal distribution. Condensation and evaporation of volatile species onto particles determines their growth in the atmosphere, and efficient counting of particles too small to detect optically in condensation particle counters. Both continuum and noncontinuum effects must again be considered, as must the surface tension which governs particle activation, initial activation, and the possibility of nucleating new particles from the vapor phase. These processes also alter the shape of the size distribution. Particle-particle collisions lead to coagulation, which further alters the size distribution. We will examine how these diverse processes are combined to describe the population dynamics for aerosol systems.

Richard C. Flagan is the Irma and Ross McCollum/William H. Corcoran Professor of Chemical Engineering and Environmental Science and Engineering at the California Institute of Technology. He has served as president of AAAR and editor-in-chief of Aerosol Science and Technology. His research spans the field of aerosol science, including atmospheric aerosols, aerosol instrumentation, aerosol synthesis of nanoparticles and other materials, and bioaerosols. His many contributions to the field of aerosol science have been acknowledged with the Sinclair Award of the AAAR and the Fuchs Award. He is a member of the National Academy of Engineering.
TUTORIAL 6
HANDS-ON AEROSOL INSTRUMENTATION DESIGN AND MEASUREMENT

Moderated by Tyler Beck, Particle Instruments, Vadnais Heights, MN

Abstract: This tutorial will enable participants to get an “under-the-hood” look at a broad spectrum of currently available aerosol instruments. Whether you are an experimentalist, modeler, or both, this is an opportunity to learn how fundamental aerosol scientific principles are used in actual aerosol measurement technologies. Key capabilities, as well as limitations, of each technique will be described in order to instill a better appreciation for what different instruments can, and cannot, do. Various aerosol instrumentation suppliers will present the design, concepts, and engineering choices that led to the successful development of different aerosol instrumentation. The tutorial is not a “marketing and sales opportunity” for participating vendors; this is an educational session with an emphasis entirely on technology and the key physical concepts employed by the instrumentation. A primary goal is that by the end of the tutorial participants no longer consider instrumentation a “black-box” but rather have some understanding of the principles and design considerations that went into the development of the various instruments. A secondary goal is that participants will use the information presented on measurement uncertainties and limitations to better avoid over-interpreting measurement results.

Instruments and companies participating:

- Aerosol Chemical Speciation Monitor (ACSM) - Aerodyne Research Inc.
- microAeth Model AE51 - AethLabs
- Particle Into Liquid Sampler (PILS) - Brechtel Manufacturing Inc.
- CPMA – Centrifugal Particle Mass Analyzer - Cambustion Ltd.
- Aethalometer AE-33 - Magee Scientific
- Portable Fine Dust Monitoring System Fidas® - Palas
- Dekati Electrical Low Pressure Impactor (ELPI) - Particle Instruments
- 3982(SMPS) - TSI Inc.

The listing of the equipment listed above is subject to change.
TUTORIAL 7
STOCHASTIC SIMULATIONS OF AEROSOL DYNAMICS
Amit Chakrabarti, Kansas State University, Manhattan, KS and Chris Hogan, University of Minnesota, Minneapolis, MN

Abstract: This tutorial will introduce attendees to the application of Monte Carlo, Molecular Dynamics, and Brownian Dynamics based approaches to modeling the motion of particles in the gas phase (aerosols). In the first half of the tutorial, the basic principles behind these simulation techniques will be introduced, including the computational generation of uniformly distributed and Gaussian distributed random variables, random number sampling from probability distributions, and the parameterization of distribution functions. Monte Carlo approaches will then be introduced generally, with a focus on non-equilibrium particulate systems undergoing aggregation. The second half of the tutorial will then discuss the application of stochastic differential equations to systems which are not in equilibrium, including diffusion dynamics at the single particle level, Brownian dynamics, and Molecular Dynamics. In particular, concepts of a Link-List will be introduced as well as the Velocity-Verlet Algorithm and solution techniques for the Langevin Equation. Specific applications of these techniques to particle aggregation, free molecular drag calculations, and particle/ion motion in the presence of electrostatic interactions will be discussed.

Amit Chakrabarti, Kansas State University, Manhattan, KS
Amit Chakrabarti received his PhD in physics from the University of Minnesota. Currently he is the William and Joan Porter Professor and Head of physics at Kansas State University. Dr. Chakrabarti has published over 150 papers in peer-reviewed journals. His current research interests include theoretical and computational studies of aggregation in aerosols, self-assembly in nanoparticles, and modeling of light scattering from irregular shaped particles.

Chris Hogan, University of Minnesota, Minneapolis, MN
Chris Hogan received his PhD in energy, environmental, and chemical engineering from Washington University. Currently he is an assistant professor of mechanical engineering at the University of Minnesota. He has published over 50 papers in peer-reviewed journals. His current research interests include Langevin dynamic based approaches to analyze collisions in aerosols, computational and experimental evaluation of the drag coefficient of nanoparticles and ions, and the heterogeneous uptake of vapor molecules by sub 10 nm particles.
TUTORIAL 8
MOLECULAR BIOLOGY-BASED AEROSOL ANALYSES

Jordan Peccia, Department of Chemical and Environmental Engineering, Yale University, New Haven, CT

Abstract: This tutorial covers molecular biology concepts and tools that are relevant for the analysis of airborne biological material. The course begins with a targeted introduction to genetics, phylogenetics, and bioinformatics for aerosol scientists that have a limited background in biology. Next, molecular biology-based methods that are useful for the quantification, identification, and population characterization of bacteria, fungi, and viruses in aerosols will be presented along with examples. These methods include polymerase chain reaction (PCR), quantitative PCR, immunoassays and proteomics, and next generation DNA sequencing to produce phylogenetic libraries. The course will conclude with an overview of sampling strategies that can be integrated with molecular biology-based analysis, and information on the quantitativeness of the above methods.

Jordan Peccia is an associate professor of chemical and environmental engineering and the environmental engineering director of undergraduate studies at Yale University. His research group integrates molecular biotechnology with process engineering to address environmental problems. Dr. Peccia has over 15 years of experience in applying molecular biology to assess the diversity of, and the exposure to airborne bacteria, fungi and viruses in the atmosphere and in indoor environments. He earned his PhD in environmental engineering from the University of Colorado and is an associate editor for Indoor Air.

Third Session: 1:00 PM – 2:40 PM
largely exclude molecular-level information, and are limited to elemental and chemical bonding characterization. Contemporary methods of high-resolution mass spectrometry can provide detailed information on the molecular content of organic aerosol, but these methods use bulk particle samples and provide no knowledge of the individual particle composition.

Therefore, application of complementary analytical methods of chemical analysis is necessary for comprehensive characterization of aerosol composition and properties ranging from bulk molecular composition of aerosol organic constituents to microscopy level details of individual particles. Combined assessment of the results provided by these complementary analytical approaches offers unique insights to understand the composition and physico-chemical properties of atmospheric aerosols determining their effects on air quality and climate. This tutorial will give an overview of new and emerging experimental techniques for off-line analysis of atmospheric particles, and applications of these techniques in fundamental studies of aerosol chemistry.

Dr. A. Laskin is a chief scientist at Pacific Northwest National Laboratory, Richland, WA. His research is focused on physical and analytical chemistry of environmental particles and includes laboratory and field studies focused on the understanding of chemical composition and physical properties of atmospheric aerosols. His group and collaborators apply an array of complementary analytical techniques for comprehensive chemical characterization of particles ranging from particle microscopy to molecular-level characterization of complex organic constituents of aerosols. Research findings of his group are relevant to a number of issues related to atmospheric chemistry of sea salt, mineral dust, soot, SOA and biomass burning particles. His present and past research interests include: environmental impact of aerosols; physical chemistry of gas-particle interactions; novel methods of aerosol collection and measurement; single-particle analysis of aerosols; high-resolution mass spectrometry of atmospheric organics; combustion related aerosols; combustion chemistry and chemical kinetics.
TUTORIAL 10
FIRES IN THE EARTH SYSTEM: FROM EMISSIONS TO IMPACTS

Christine Wiedinmyer, Atmospheric Chemistry Division, NCAR
Earth Systems Laboratory, National Center for Atmospheric Research, Boulder, CO

Abstract: Open burning, whether wildland fires, prescribed burning, burning as part of agricultural practices, and even the burning of waste and biofuels, emits significant amounts of trace gases and particulate matter to the atmosphere. These emissions can play an important role in local and regional air quality, global atmospheric chemistry, and climatic processes. This tutorial will summarize some of the recent advances and challenges in the estimation of emissions from open burning. The mechanisms by which emissions from biomass burning impact to air quality, climate, and further, how these interactions may change in the future will be reviewed. Finally, ongoing research to understand associated with the burning of waste materials and biofuels will be introduced.

Dr. Christine Wiedinmyer is a scientist in the Atmospheric Chemistry Division of the NCAR Earth System Laboratory. She received her MS and PhD from the Department of Chemical Engineering at the University of Texas in Austin. Her research has focused on the characterization of gas-phase and particulate emissions to the atmosphere and their impact on air quality and climate. Dr. Wiedinmyer has developed a model to estimate the global emissions from fires for use by chemical and climate modelers.

TUTORIAL 11
ADVANCED VEHICLES, EMERGING TECHNOLOGIES, AND THEIR IMPACT ON PARTICULATE EMISSIONS

Kent C. Johnson, Thomas Durbin, George Karavalakis, David Cocker, and Wayne Miller, Emissions and Fuels Research, University of California Riverside, Center for Environmental Research and Technology, Riverside, CA

Abstract: Primary and secondary aerosol emissions impact our environmental and health from its global warming potential to its chemical and physical impacts. Aerosol characterization, formation, and understanding are needed as we innovate new technologies to meet our global objectives. Recently a wave of new technologies has resulted due to a desire in reducing greenhouse gases (GHG) emissions. Light duty vehicles have
implemented direct injection gasoline techniques to achieve like-diesel performance, but at the expense of an increase in PM mass and a lower particle size distribution. Natural gas vehicles are taking on a larger role in our heavy duty mobile fleet due to low fuel costs. These NG vehicles may be lower in PM mass, but their ultra-fine PM emissions have been found to be significant due to differences in oil contributing to the exhaust emissions. New ocean going vessels have demonstrated lower PM emissions from ultra-low sulfur fuels. Interestingly marine PM mass has been reduced, but not the overall black carbon emissions under some conditions. In this tutorial I will take you on a journey of advanced vehicles and emerging technologies and their impaction on aerosol formation and its interaction with the environment.

Dr. Johnson joined CE-CERT’s research faculty in 2009 after serving on the Center’s staff as principal development engineer and manager of the Mobile Emissions Laboratory (MEL) and other laboratories. He has worked in the field of emissions and their interaction with the environment for over 20 years. He received his PhD in chemical and environmental engineering from UC Riverside where his doctoral research focused on the impact of emissions on ambient air quality. The main objective of Dr. Johnson’s research is to improve our understanding of the impact of emissions on our environment. The research interests include: 1) quantification of in-use emission measurements; 2) advancement of measurement techniques; 3) characterization of particulate matter (PM), and 4) study of fuel impacts on emissions for diesel engines. Recently his research has expanded to include the characterization of advanced vehicles (natural gas, hybrid, and full electric heavy duty vehicles) and their in-use performance and impact on the environment which includes climate change.

TUTORIAL 12
AEROSOL EXPOSURE ASSESSMENT: PRINCIPLES AND TECHNIQUES

John Volckens, Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO

Abstract: This tutorial covers concepts and tools relevant to assessing human exposure to aerosol hazards. The course is intended for individuals with a basic, but limited, understanding of environmental and occupational health. The course begins with an overview of the theory of exposure assessment and exposure statistics (for non-statisticians), followed by a discussion of
strategies, measurement techniques, and pitfalls associated with estimating human intake of airborne particles. Specific topics will include aspects of study design, personal and area monitoring, time-integrated vs. real-time monitoring, size-selective sampling, analytical techniques, data analyses, and strategies for working with human subjects. The course will conclude with an overview of more advanced techniques, such as geo-referencing, land-use regression modeling, spatiotemporal exposure monitoring, and other emerging research in the field.

Dr. John Volckens is an associate professor in the Departments of Environmental and Radiological Health Sciences and Mechanical Engineering at Colorado State University. He is also the director of the Center for Energy Development and Health in CSU’s Energy Institute. His research interests involve human exposure to airborne particles, aerosol measurement and instrument development, and air pollution-related disease. He received a PhD from the University of North Carolina at Chapel Hill and went on to Postdoc at the U.S. EPA’s National Exposure Research Laboratory in Research Triangle Park, NC. Dr. Volckens is the recipient of the AIHA Journal’s ‘Best Paper’ award in 1999, has served two terms as chair of AIHA’s Aerosol Technology Committee, and is the former president of the Board of Directors for the Journal of Occupational and Environmental Hygiene. He has over 15 years of experience and has published over 50 manuscripts related to exposure science and air pollution.

Fourth Session: 3:00 PM – 4:40 PM

TUTORIAL 13
QUALITY-ASSURED ATMOSPHERIC AEROSOL MEASUREMENTS: AEROSOL SAMPLING, CONDITIONING AND PARTICLE SIZE SPECTROMETERS

Alfred Wiedensohler, Leibniz Institute for Tropospheric Research, WMO-GAW World Calibration Centre for Aerosol Physics, Leipzig, Germany

Abstract: This tutorial will provide international standards to perform long-term and short-term atmospheric aerosol measurements. It covers the aspects of aerosol inlets also under extreme environmental conditions, requirements of the aerosol drying prior physical measurements as well as measurements of the particle number size distribution using mobility particle size spectrometer and their quality assurance.

Prof. Dr. Alfred Wiedensohler is head of the Experimental Aerosol & Cloud Microphysics Department at the Leibniz Institute for
Tropoloheric Research. He is also head, World Calibration Center for Aerosol Physics in the frame of the WMO-GAW program. He is a guest professor at the Peking University, Department of Environmental Science and Engineering, Beijing, China. Presently, he is editor-in-chief of the international journal “Atmospheric Environment”. He has published more than 290 peer-reviewed articles in the field of aerosol physics and instrumentation as well as in atmospheric science.

TUTORIAL 14
ENVIRONMENTAL CHAMBERS: APPROACHES AND CHALLENGES

David Cocker, University of California Riverside, Riverside, CA

Abstract: Environmental chambers are widely used to study atmospheric chemistry and secondary organic aerosol formation. While very useful for these studies, the presence of chamber surfaces presents a unique set of experimental challenges. This tutorial will explore the historical development of chambers (static and flow), the role of surfaces in influencing the chemistry within the chamber, and how these effects are characterized and accounted for within such experiments. Chamber quality control experiments including assessment of low-NOx experimental conditions, wall loss, particle background, particle-gas-wall interactions, HONO release, and implications for kinetic and aerosol modeling will be discussed.

David Cocker is a professor of chemical and environmental engineering at UC Riverside. He received his PhD in environmental engineering science from Caltech and a BS in environmental engineering and chemistry from UC Riverside. He is the current director of the atmospheric processes laboratory group at the Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT). Research interests include experimental investigations of secondary organic aerosol formation using environmental chambers. Additional research interests focus on characterizing in-use particulate and gaseous emissions from mobile and stationary sources.

TUTORIAL 15
FUEL COMBUSTION AND EMISSION CONTROLS

Antonio H. Miguel, Southern California Particle Center & Supersite, Institute of the Environment, UCLA, Los Angeles, CA

Abstract: Over the last decade, increased understanding of the effects of fuel composition and emission control technologies
on the chemical and physical properties of the emissions led to significant progress in reducing the concentration of regulated and un-regulated air pollutants. This tutorial summarizes key developments in fuel combustion and emission control technologies of major sources of urban air pollution. Emission sources focused include: coal combustion at power plants, gasoline and diesel engines, ships, airplanes, two-stroke engines, and airport emissions that pollute air for miles downwind.

Antonio H. (Toni) Miguel completed his PhD in chemistry at the University of Illinois Urbana-Champaign. His current research interests include the effect of the composition vehicular organic compound emissions on new particle formation. Currently Dr. Miguel is an air pollution specialist at the ARB’s Haagen-Smit Laboratory in El Monte, CA.

TUTORIAL 16
NEW PARTICLE FORMATION AND GROWTH

Charles O. Stanier, Associate Professor of Chemical and Biochemical Engineering, Associate Research Engineer, IIHR Hydroscience and Engineering, University of Iowa, Iowa City, IA

Abstract: This tutorial will provide an overview of new particle formation and growth. The main topics to be addressed include: (1) the state-of-the-science in field campaigns regarding the new 1-3 nm atmospheric particles with respect to formation rates, precursors, mechanisms, and geographical coverage; (2) current status of field and laboratory research on particle growth from these initial nuclei sizes to larger particle sizes capable of cloud droplet formation. Both ground-based and aircraft based evidence will be included in the tutorial. Results from a wide variety of established and new instruments will be covered (e.g. SMPS, <20 nm aerosol mass spectrometers, ion mobility spectrometers, CIMS, tandem differential mobility analyzers, condensational growth assisted nuclei sizing); however, the focus on the tutorial will be on “what have we learned” from these instruments, rather than on their technical details. Techniques for separating urban ultrafine aerosols into secondary and primary components will also be covered. Time permitting, regional and global model-based assessments of the impact of new particle growth on the atmospheric particle size distribution, the cloud condensation nuclei concentration, and the indirect aerosol effect will be summarized in the tutorial.

Charles O. Stanier is an associate professor in the Department of Chemical and Biochemical Engineering, and a member of IIHR Hydroscience and Engineering Institute. His research interests
are in fundamental and applied issues in air pollution, climate science, and aerosol science. His field studies specialize in the continuous monitoring of ultrafine particles and secondary aerosol precursors most recently in Mexico City, Iowa City IA, and Bondville IL. He is the recipient of the NSF CAREER, the Walter R. Rosenblith Young Investigator Award of the Health Effects Institute, and the Sheldon K. Friedlander award of AAAR. Dr. Stanier has five years of experience in industry.

PLENARY LECTURES

Tuesday, October 21
8:00 AM – 9:15 AM

CAN WE TAME THE AEROSOL UNCERTAINTY MONSTER?

Ken Carslaw, PhD, Institute for Climate and Atmospheric Science and School of Earth & Environment, University of Leeds, United Kingdom

Abstract

Aerosol science has made enormous steps in understanding fundamental processes and in making measurements that probe ever more complex particle properties. But how much of this new knowledge is being translated into better models of how aerosols affect climate? From the third to the fifth IPCC assessment report, aerosols have remained the largest radiative forcing uncertainty. In this presentation I address two questions: firstly, whether we are working on the right processes and secondly, how we can use models and observations to slowly reduce the persistent uncertainty. Using fairly well established statistical techniques it is possible to perform essentially a Monte Carlo simulation with a complex global aerosol model. This enables the contribution of all important processes to the overall prediction uncertainty to be quantified and mapped. The list of key processes turns out to differ substantially depending on whether you want to understand the uncertainty in present-day aerosol or its effect on radiative forcing. The properties of biomass burning particles are important for present-day global CCN uncertainty but are less important for the uncertainty in forcing, although big questions remain about how these particles interact with clouds. The list also depends on whether you want to understand the sources of uncertainty since the pre-industrial period or over recent decades. Natural aerosols tend to dominate forcing uncertainty when referenced back to the pre-industrial, but uncertain anthropogenic emissions are the most important factor for recent changes in forcing, with aerosol microphysical processes being less important. Regardless, the list of most uncertain parameters...
enables us to begin to constrain the model uncertainty using well-chosen measurements. In this direction, I will describe a methodology that could be used to define an optimum measurement strategy if the reduction in model uncertainty is the objective.

Ken Carslaw is a professor of atmospheric science at the University of Leeds in the UK. He is director of the Institute for Climate and Atmospheric Science and holder of the Royal Society Wolfson Award. Dr. Carslaw received his BSc in physics from the University of Birmingham, UK, and his PhD from the University of East Anglia in stratospheric aerosol thermodynamics. His early career at the Max Planck Institute for Chemistry in Mainz focused on understanding polar stratospheric clouds, leading to the discovery of liquid PSCs. Since 2005 his research group at Leeds has developed the Global Model of Aerosol Processes (GLOMAP). The model has been used to tackle a diverse range of aerosol problems, notably the role of nucleation in generating global CCN. Dr. Carslaw has published 130 papers on aerosol processes with diverse topics including nucleation, aerosol-cloud interaction, global CCN, Arctic and marine processes, volcanic impacts, earth system couplings, stratospheric aerosol and model uncertainty. He is co-founding and now executive editor of Atmospheric Chemistry and Physics.

Wednesday, October 22
8:00 AM – 9:15 AM

AEESP LECTURE
FINE PARTICULATE AIR POLLUTION AND HUMAN HEALTH: SCIENCE, PUBLIC POLICY, AND CONTROVERSY
C. Arden Pope III, PhD, Mary Lou Fulton Professor of Economics, Brigham Young University, Provo, UT

Abstract
There is increasingly compelling scientific evidence that breathing fine particulate air pollution contributes to human morbidity and mortality. Epidemiologic evidence suggests that short-term exposure exacerbates existing pulmonary and cardiovascular disease and increases the risk of becoming symptomatic, requiring medical attention, or even dying. Long-term repeated exposures increase the risk of chronic pulmonary and cardiovascular disease. There appears to be multiple mechanistic pathways that link exposure with adverse health outcomes including, pulmonary/systemic oxidative stress and inflammation, enhanced initiation and progression of atherosclerosis, and altered cardiac autonomic function. A
recent integrated study of factors that contribute to burden of disease suggest that exposure to fine particulate air pollution contributes substantially to global burden of disease, especially in much of the developing world. There is also evidence that public policy efforts to reduce fine particulate matter air pollution can be successful, can improve air quality, and can contribute to enhanced human health. Pollution abatement efforts, however, can also be costly, challenging and controversial. This presentation will focus on the air pollution health science that motivates the public policy and will briefly discuss the most recent controversy regarding the use of “secret science” to inform public policy.

Dr. C. Arden Pope III is the Mary Lou Fulton Professor of Economics at Brigham Young University. He received his PhD from Iowa State University (economics/statistics) and was a Fellow at the Harvard School of Public Health (environmental health and public policy). He has conducted research dealing with various natural resource and environmental issues. His cross-disciplinary research in environmental economics and air pollution epidemiology has resulted in seminal studies on the health effects and costs of air pollution. Dr. Pope has conducted or collaborated on various key studies of human health effects of short- and long-term air pollution exposure, has played prominent roles in reviewing and interpreting this literature, and is one of the world’s most widely cited and recognized experts on the health effects of air pollution. He has been the recipient of various honors and awards including the Thomas T. Mercer Joint Prize from the American Association for Aerosol Research and the International Society for Aerosols in Medicine (2001), the Utah Governor’s Medal for Science & Technology (2004), BYU’s Karl G. Maeser Distinguished Faculty Lecturer (2006); Honorary Fellow of the American College of Chest Physicians (FCCP Hon, 2008), and International Society for Environmental Epidemiology Best Environmental Epidemiology Paper Award (2010).
FRIEDLANDER LECTURE
LINKING TAILPIPE TO AMBIENT: ATMOSPHERIC EVOLUTION OF COMBUSTION EMISSIONS

Allen L. Robinson, PhD, Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA

Abstract
Emissions from motor vehicles, wildfires, and other combustion processes are major contributors to atmospheric fine particle mass. These emissions are a complex mixture of organic and inorganic species. Some of these species are directly emitted as particles, but the vast majority of the emissions are gases and vapors. Upon entering the atmosphere, emissions are exposed to oxidants and sunlight, which causes them to evolve chemically and physically, generating secondary particulate matter. To develop effective control strategies one must understand the overall contribution of emissions from combustion processes to ambient particulate matter - both direct particle emissions and particle mass formed in the atmosphere. This talk will synthesize results from source testing, tunnel experiments, ambient measurements and chemical transport modeling to investigate the atmospheric evolution of emissions from combustion processes, focusing on organic aerosols. The results reveal a dynamic picture in which secondary organic aerosol formed in the atmosphere dramatically exceeds the direct particle emissions, especially for low emitting sources. Both speciation data and mass closure analysis indicate that low-volatility vapors are an important class of secondary organic aerosol precursors. The talk concludes with a brief discussion of the implications of these findings on human exposures, climate, and the design of regulations to control pollutant emissions.

Dr. Allen L. Robinson is the Raymond J. Lane Distinguished Professor and Head of the Department of Mechanical Engineering at Carnegie Mellon University. He is also a professor in the Department of Engineering and Public Policy and a member of the Center for Atmospheric Particle Studies. Dr. Robinson’s research examines the impact of emissions from energy systems on air quality and global climate. A major focus is the atmospheric transformation of particulate matter emissions from cars, trucks, and other combustion systems. In 2012-2013 he was a faculty member at Colorado State University in the Departments of Atmospheric Science and Mechanical Engineering. In 2009-2010
he was a visiting faculty fellow at the Cooperative Institute for Research in Environmental Science at the University of Colorado in Boulder. He is currently serving on the Research Committee of the Health Effects Institute, the Environmental Protection Agency Clean Air Scientific Advisory Committee (CASAC) Air Monitoring and Methods Subcommittee. He holds a BS in civil engineering from Stanford University and an MS and PhD in mechanical engineering from the University of California at Berkeley.

Friday, October 24
8:00 AM – 9:15 AM

CLIMATE, BIOFUEL EMISSIONS, AND THE QUEST FOR RELEVANCE

Tami Bond, PhD, Civil and Environmental Engineering and University Scholar, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL

Abstract

Over the last 25 years, the climate research community has acknowledged that direct and cloud-related aerosol radiative forcing is one of the greatest uncertainties in understanding the trajectory of future climate. Understanding of present-day and historical aerosol forcing assists in determining climate sensitivity. Dr. Bond will discuss what is known about the historical evolution of burning biofuel to provide energy, the characteristics of emitted particles, and how these particles change with combustion technology. She will review how emission measurements made in controlled situations differ from those in real, in-use settings. She will also look forward to changes expected during the next 25 years, when aerosol concentrations will decrease or remain the same. The growing greenhouse-gas forcing is quite likely to overwhelm aerosol forcing, leaving aerosol science as a less important player in the climate arena. Nevertheless, stresses on well-being via climate and health are likely to persist, increasingly concentrated among sensitive and low-income populations. Dr. Bond argues that aerosol scientists will have a transformed but equally relevant role to play in the coming world.

Tami Bond is an associate professor in civil and environmental engineering and University Scholar at the University of Illinois at Urbana-Champaign. Her research group measures aerosol properties in the laboratory and emission rates far afield, and uses modeling to explore particle properties and their climate impact. She has BS and MS degrees in mechanical engineering, and an interdisciplinary PhD from the University of Washington.
She was a NOAA Climate and Global Change Postdoctoral Researcher, received an NSF CAREER award, has been an editor of Aerosol Science & Technology, and currently serves on the U.S. Technical Advisory Group to the ISO Technical Committee on Clean Cookstoves. Her professional hobby is synthesis and integration, the most recent example being the 177-page “Bounding Black Carbon” assessment published in the Journal of Geophysical Research.

SPECIAL SYMPOSIA

LINKING AEROSOLS WITH PUBLIC HEALTH IN A CHANGING WORLD

Chair: Rodney Weber, Georgia Institute of Technology, Atlanta, GA
Co-Chair: Vishal Verma, Georgia Institute of Technology, Atlanta GA

Awareness of the detrimental health effects of outdoor air pollution has been increasing. The World Health Organization recently announced that ambient pollution is a leading environmental cause of cancer deaths, and a Lancet study on the global burden of disease ranked particulate matter as one of the highest risk factors. Wide-spread and severe air pollution episodes in the developing economies of Southeast Asia and Asia have not only increased public awareness of these issues but also have provided unique opportunities to quantify their enormous impact. Advances are rapidly being made in linking aerosols and health endpoints through epidemiological, panel and concentrated air pollutant studies. Use of satellite data and low-cost widely dispersed sensors are better assessing exposures. Continuing progress in aerosol chemical characterization have provided new insights, including varies measures of aerosol oxidative properties, based on the mechanistic model that certain aerosol components may catalytically generate oxidants in vivo leading to oxidative stress and inflammation. This symposium solicits contributions in all areas that address aerosol-health linkages.
BIOMASS BURNING AEROSOL: FROM EMISSIONS TO IMPACTS

Co-chairs: Sonia M. Kreidenweis, Colorado State University, Fort Collins, CO and Ryan Sullivan, Carnegie Mellon University, Pittsburgh, PA

Biomass burning is receiving increased attention for its potential roles in visibility reduction, negative impacts on air quality and health, and perturbations to regional climate through effects on circulation and precipitation patterns. Wildfire, prescribed fire, and domestic combustion of biomass represent regionally-important sources of trace gases and particles that are implicated in these effects. In addition, transport and deposition of absorbing particles onto snow and ice can accelerate melting, with correspondingly large impacts on water resources and local ecosystems. Regional impacts can be especially important and raise considerable concern in the United States and other regions throughout the globe. We invite contributed papers covering aspects of biomass burning, including characterization of emissions, and studies of human health, visibility, and climate impacts. Papers addressing regional impacts in the United States and other parts of the world, as well as impacts on global scales, are all welcomed.

AEROSOL SOURCES FROM EMERGING ENERGY TECHNOLOGIES AND PRODUCTION

Co-chairs: Akua Asa-Awuku, University of California Riverside, Riverside, CA and David Cocker, University of California Riverside, Riverside, CA

This symposium solicits contributions that improve our understanding of the aerosol budget from advanced energy technology sources. While the sources and production of energy are major drivers of national economic growth, they also play a fundamental role in regional air quality and global climate change. However, the contribution of the emerging energy sources (e.g., but not limited to, natural gas, alternative fossil fuels, algae, fracking, biomass, solar, biochar) to the aerosol budget has yet to be fully characterized. Abstracts submitted to this symposium will provide insight into the theoretical characterization, experimental methods, policy standards, characterization and instrumentation of aerosols emitted from emerging energy technologies.
AIR QUALITY AND CLIMATE IN THE SOUTHEAST US: INSIGHTS FROM RECENT MEASUREMENT CAMPAIGNS

Co-chairs: Ann Marie Carleton, Rutgers University, New Brunswick, NJ and Robert Griffin, Rice University, Houston, TX

Though widely acknowledged to occur, the extent to which emissions from human activity alter the fate of biogenic emissions to form radical species, ozone and particulate matter, including optically active and cloud-forming particles, is poorly understood. Comprehensive investigations among 100s of scientists converged on the Southeastern U.S. during the summers of 2012 and 2013 to address these critical knowledge gaps. Coordinated studies in the Southeast U.S. during the 1990s redefined air quality management. In the past 20+ years since, our understanding of atmospheric chemistry has vastly improved largely due to improved temporal resolution and an expanded spectrum of measurable compounds through state-of-art instrumentation. Experimental results from DC3 (Deep Convective Clouds and Chemistry), DISCOVER-AQ, the Southeast Atmosphere Study (SAS), and SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have the potential to produce substantial leaps in our understanding. This symposium solicits contributions presenting results and insights obtained from these campaigns.

ADVANCES IN THE PHYSICS AND CHEMISTRY OF NEW PARTICLE FORMATION AND GROWTH

Co-chairs: James N. Smith, National Center for Atmospheric Research, Boulder, CO and Jeffrey R. Pierce, Colorado State University, Fort Collins, CO

This symposium solicits contributions that describe research progress on atmospheric aerosol nucleation and growth, including laboratory studies, theoretical calculations and modeling, and field measurements. This is currently a time of rapid advances in research on atmospheric aerosol nucleation and the growth of nanometer-sized aerosol. New instruments can routinely detect particles as small as 1.5 nm in diameter and measure the composition of ambient charged and neutral clusters. New facilities now allow laboratory studies of nucleation with very low levels of contaminants and at precursor concentrations that approximate those in the real atmosphere. Theoretical calculations are providing insights into the mechanisms of nucleation and growth. Regional and global models that account for nucleated aerosols are increasing in
sophistication. The foci of these new instruments, facilities, and models are the fundamental questions that have challenged researchers for generations: What chemical species are responsible for nucleation? What species and mechanisms are responsible for the growth of freshly nucleated atmospheric aerosol? What are the ultimate impacts of atmospheric new particle formation in global chemistry and climate?
EXHIBITORS

AAAR gratefully acknowledges the following companies for their participation at the 33rd Annual Conference. Please visit each company in Panzacola F/G at Rosen Shingle Creek.

Organization...............................**Booth Number**

As of September 15, 2014

<table>
<thead>
<tr>
<th>Organization</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodyne Research, Inc.</td>
<td>207</td>
</tr>
<tr>
<td>AethLabs</td>
<td>206</td>
</tr>
<tr>
<td>American Ecotech</td>
<td>302</td>
</tr>
<tr>
<td>Brechtel Manufacturing, Inc.</td>
<td>204</td>
</tr>
<tr>
<td>Cambustion</td>
<td>205</td>
</tr>
<tr>
<td>Cooper Environmental Services.</td>
<td>306</td>
</tr>
<tr>
<td>ESPnano</td>
<td>115</td>
</tr>
<tr>
<td>Grimm Technologies, Inc.</td>
<td>210</td>
</tr>
<tr>
<td>Livermore Instruments</td>
<td>107</td>
</tr>
<tr>
<td>Magee Scientific</td>
<td>214</td>
</tr>
<tr>
<td>Mesa Labs</td>
<td>314</td>
</tr>
<tr>
<td>Metrohm</td>
<td>312</td>
</tr>
<tr>
<td>MSP Corporation</td>
<td>200</td>
</tr>
<tr>
<td>Palas GmbH</td>
<td>113</td>
</tr>
<tr>
<td>Particle Instruments</td>
<td>211/213/215</td>
</tr>
<tr>
<td>PermaPure</td>
<td>310</td>
</tr>
<tr>
<td>Sibata USA, Inc.</td>
<td>101</td>
</tr>
<tr>
<td>Sunset Laboratory, Inc.</td>
<td>202</td>
</tr>
<tr>
<td>Taylor and Francis</td>
<td>304</td>
</tr>
<tr>
<td>Tisch Environmental, Inc.</td>
<td>212</td>
</tr>
<tr>
<td>TSI, Inc.</td>
<td>201/203</td>
</tr>
<tr>
<td>URG</td>
<td>111</td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency</td>
<td>300</td>
</tr>
</tbody>
</table>
EXHIBITOR LISTING

As of September 15, 2014

<table>
<thead>
<tr>
<th>Organization</th>
<th>Booth Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodyne Research, Inc.</td>
<td>207</td>
</tr>
</tbody>
</table>
| 45 Manning Road
Billerica, MA 01821
USA
Tel: 978-663-9500
Fax: 978-663-4918
Website: www.aerodyne.com | |
| Our main products are state-of-the-art scientific instruments. Most of these instruments are designed to measure gases or aerosol particles in real time and with great sensitivity. Our particle instruments include our Aerosol Mass Spectrometer systems, the Aerosol Chemical Speciation Monitors and the CAPS PMex and SSA Monitors. | |
| AethLabs | 206 |
| 1640 Valencia Street, Suite 2C
San Francisco, CA 94110
USA
Tel: 415-529-2355
Website: www.aethlabs.com | |
| AethLabs is the exclusive provider of the microAeth® instrument for measuring aerosol Black Carbon. The microAeth® is battery powered, self-contained and small enough to fit in your pocket. With Aethalometer® measurement technology inside, the microAeth® is built on proven technology that has been used world-wide for over 30 years | |
| American Ecotech | 302 |
| 100 Elm Street, Factory D
Warren, RI 02885
USA
Tel: 401-247-0100
Fax: 401-537-9166
Website: www.AmericanEcotech.com | |
| American Ecotech specializes in the supply of state of the art instruments measuring specific gases, aerosols, and particulate airborne matter, including gas analyzers to measure NOx, CO, SO2, CO2, NH3, H2S, NOy, and/or ozone. We supply digital dataloggers and advanced remote maintenance software for automated field data validation and reporting. | |
Brechtel Manufacturing, Inc. 204

1789 Addison Way
Hayward, CA 94544
USA
Tel: 510-732-9723
Fax: 510-732-9153
Website: www.brechtel.com

Are you in control of your measurement technology or does it control you? Are you frustrated by the inability to easily use or customize your measurement solutions? Come join the BRECHTEL family and let us help you succeed. We provide easy-to-use technologies that fit your budget and let you focus on science. Our measurement solutions include black carbon, size-resolved particle water uptake, miniature instruments for unmanned vehicles, aircraft and ground-based cloud sampling inlets and others. We excel at adapting our technologies to solve your unique needs. Visit us at www.brechtel.com.

Cambustion .. 205

J6 The Paddocks
347 Cherry Hinton Road
Cambridge CB1 8DM
UK
Tel: +44 1223 210250
Website: www.cambustion.com

Cambustion offers the CPMA for classifying particles by their mass-to-charge ratio, and the DMS for the fastest available mobility size spectra (with traceable calibrations for both spheres and agglomerates). To complement the CPMA when used as a mass concentration standard, we also produce the Unipolar Diffusion Aerosol Charger (UDAC) to highly charge an aerosol, and an Electrostatic Precipitator for removal of charged particles to allow quantification of the uncharged population.
Cooper Environmental Services

9403 SW Nimbus Avenue
Beaverton, OR 97008
USA
Tel: 503-670-8127
Fax: 503-624-2120
Website: www.cooperenvironmental.com

Cooper Environmental Services provides innovative scientific instruments and technical consulting for complex air quality issues, specializing in the measurement of metals in industrial emissions and ambient air, and is the first company to commercially manufacture XRF-based multi-metals CEMS in the world.

ESPnano

3915 East Francis Avenue, #C6
Spokane, WA 99217
USA
Tel: 509-465-0900
Fax: 509-465-1971
Website: www.espnano.com

The first of its kind, a truly portable particle sampler that collects samples of airborne particulate matter for many applications in research and industrial hygiene, including aerosol characterization studies, exposure assessment, nano-material analysis.

Grimm Technologies, Inc.

P. O. Box 6358
Douglasville, GA 30154
USA
Tel: 770-577-0853
Fax: 770-577-0955
Website: www.grimm-aerosol.com

Grimm Technologies, Inc. manufactures, distributes, and services our product line of SMPS+Cs, Real Time Aerosol Spectrometers, Electrometers, Aerosol Generators and Accessories for Research, IAQ, Environmental and Defense Applications. Measurement capabilities are from .8nm-32,000nm.
Livermore Instruments Inc. 107
2038 Livingston Street, Suite B
Oakland, CA 94606
USA
Tel: 925-215-8828
Fax: 925-264-0775
Website: www.livermoreinstruments.com
Livermore Instruments’ Single Particle Aerosol Mass Spectrometer (SPAMS) is a revolutionary improvement in aerosol analysis, measuring the aerodynamic diameters (0.1-10 microns) and compositions of hundreds of individual particles per second, even under extraordinary particle loads. LII is also TSI’s only authorized servicer of Aerosol Time-of-Flight Mass Spectrometers.

Magee Scientific .. 214
1916A M. L. King Jr. Way
Berkeley, CA 94704
USA
Tel: 510-845-2801
Fax: 510-845-7137
Website: www.mageescientific.com
Magee Scientific is the originator of the Aethalometer®, the most widely used instrument for real-time measurement of Black Carbon aerosols. Various models offer analysis at 1, 2, 7 or 10 optical wavelengths with time resolutions to 1 second. The Optical Transmissometer measures the BC content of previously-collected filter samples.

Mesa Labs ... 314
12100 West 6th Avenue
Lakewood, CO 80228
USA
Tel.: 303-987-8000
Fax: 303-987-8989
Website: www.mesalabs.com
BGI has been offering particle measurement solutions to the aerosol and environmental science industries for five decades designing and manufacturing Aerosol Generation Devices, Personal Sampling Cyclones, Sampling Pumps, Air Samplers, Filter Holders and Air Flow Calibrators. Custom cyclone designs are our specialty! BGI is now a part Mesa Labs.
Metrohm USA.. 312
6555 Pelican Creek Circle
Riverview, FL 33578
USA
Telephone: 866-METROHM
Website: www.metrohmusa.com

Metrohm is a leading manufacturer of laboratory and process instruments for chemical analysis. Metrohm is unique in offering solutions for all varieties of ion analysis (potentiometric and Karl Fischer titration, voltammetry, ion chromatography and pH). The Metrohm portfolio also includes near-infrared spectroscopy and air monitoring. Visit: http://www.metrohmusa.com for more information.

MSP Corporation... 200
5910 Rice Creek Parkway – Suite 300
Shoreview, MN 55126
USA
Tel: 651-287-8100
Fax: 651-287-8140
Website: www.mspcorp.com

MSP Corporation is an instrument company with products for scientific research and industrial applications. Our aerosol instruments include high-resolution cascade impactors with stage cutpoints from 10μm down to 10nm, aerosol concentrators, wide-range aerosol spectrometers, water-based condensation particle counters, an airborne fiber monitor, tandem differential mobility analyzers, and laboratory standard aerosol generators for calibrating aerosol instruments.

Palas GmbH .. 113
Greschbachstr. 36
Karlsruhe 76229
GERMANY
Tel: +49 721 96213-0
Fax: +49 72196213-33
Website: www.palas.de

With more than 60 submitted patents, the Palas® GmbH has effectively set standards in aerosol technology since 1983. Today Palas® offers a complete product range for the aerosol generation and measurement from 5 nm to 100 μm:
• Certified fine dust monitoring system Fidas®
• Universal Scanning Mobility Particle Sizer U-SMPS
• Condensation Particle Counter UF-CPC
• Aerosol generators RBG, Spark etc.

Particle Instruments LLC 211/213/215
1048 Centerville Circle
Vadnais Heights, MN 55127
USA
Tel: 612-328-2722
Fax: 651-407-9050
Website: www.particleinstruments.com
Particle Instruments LLC is the North American distributor for Aerosol Dynamics Inc., Dekati Ltd., Kanomax Inc., Pegasor OY and Topas GmbH. Please stop by our booth to see our full line of aerosol instrumentation – everything from atomizers and aerosol generators to instruments measuring particle size, mass, and charge.

Perma Pure LLC ... 310
8 Executive Drive
Toms River, NJ 08755
USA
Telephone: 732-244-0010
Fax: 732-244-8140
Website: www.permapure.com
Perma Pure makes analysis possible with our Sample Gas Dryers and Humidifiers designed to control the moisture content of your sample aerosol gas using our exclusive Nafion tubing technology. New this year is the MD-700 Large Diameter Gas Dryer developed to limit particle losses in PM and Aerosol analysis.

Sibata USA, Inc. ... 101
2959 Chapel Hill road
Douglasville, GA 30135
USA
Telephone: 770-883-2697
Web site: www.sibatausa.com
Sibata USA is an instrument manufacturer and sales company based in Atlanta GA. Sibata USA’s parent company, Sibata Scientific Technology, is located in Tokyo Japan. Sibata USA specializes in instrumentation for ambient and indoor air sampling for particulate and organic materials. We are proud to have a long history of environmental and industrial hygiene personal samplers/monitors and technical support to offer the scientific community worldwide.
Sunset Laboratory Inc. 202
10180 SW Nimbus Avenue, Suite J-5
Tigard, OR 97223
USA
Tel: 503-624-1100
Fax: 503-620-3505
Website: www.sunlab.com

Sunset Laboratory Inc. is celebrating 30 years of specializing in the analysis of the carbon aerosol component of air pollution. Not only do we offer OCEC filter analysis, Sunset Laboratory also provides the necessary instrumentation for carbon aerosol analysis. Our equipment is proven and the industry standard. We offer models suitable for the laboratory or in the field, and ready for use with the NIOSH 5040, IMPROVE-A, and EUSAAR 2 protocols. Clients include researchers working for government regulatory agencies, private companies, commercial laboratories, and universities.

Taylor & Francis 304
530 Walnut Street, Suite 850
Philadelphia, PA 19106
USA
Tel: 215-625-8900
Website: www.tandfonline.com

For two centuries, Taylor & Francis has been committed to the publication of scholarly research. We are the publisher of Aerosol Science & Technology, the AAAR’s official journal, and other similar titles. Visit the Taylor & Francis booth to learn about our products and services and for free sample copies.

Tisch Environmental, Inc. 212
145 South Miami Avenue
Cleves, OH 45002
USA
Tel: 513-467-9000
Fax: 513-467-9009
Website: www.tisch-env.com

Tisch Environmental is a family business founded to develop and manufacture particulate monitoring instruments. The Tisch family have produced nearly half million devices for the air pollution monitoring community over the last 60 years. TEI is looking into the future needs of today’s aerosol research professionals.
For over 50 years, TSI has collaborated with research intuitions around the world to develop and manufacture state-of-the-art instrumentation for a wide variety of aerosol research applications. TSI's recent innovations include the Scanning Mobility Particle Sizer Model 3938 and Nanoparticle Emission Tester Model 3795.

The Ambient Ion Monitor (AIM) for the continuous direct measurement of particulate nitrate, sulfate and ammonium contained in PM2.5 and measurements of nitric acid and ammonia gases is available from URG. Outdoor/indoor monitors for speciation of acid aerosols, particles, gases, organics, inorganics found in PM2.5, PM1, PM10 include the Medium Volume Particulate Sampler. Other components are outdoor/indoor Teflon coated cyclones, stainless steel cyclones for diesel emissions.

The U.S. Environmental Protection Agency is advancing atmospheric aerosol research to improve our understanding of its formation and atmospheric transport and fate and to assess its health effects. In light of climate change, research is addressing related impacts and interventions of airborne particulate matter, notably black carbon.
Mobile Smog Simulator
New Capabilities to Study Urban Air Mixtures

The U.S. Environmental Protection Agency’s Air, Climate, and Energy Research program conducts comprehensive inhalation toxicity testing of combustion emissions. A smog simulator developed by EPA scientists and engineers has unique capabilities that will provide information for assessing the health impacts of relevant multipollutant atmospheres and will identify the relative contribution of specific sources on these processes.

Research Objectives:

• Generate novel atmospheres containing secondary organic aerosols and other reaction products.
• Study multipollutant health effects, including types, classes and activity that affect various health indicators.
• Perform cell (in vitro) screening for mutagenicity, cytotoxicity and oxidative stress markers.
• Conduct acute cardiopulmonary health testing of atmospheres using animal models of cardiac stress, hypertension, metabolic syndrome, respiratory infections and allergic asthma.
• Assess effects of temperature changes on smog formation.
• Support EPA’s evaluation of air mixtures for setting the National Ambient Air Quality Standards (NAAQS).

SMOG SIMULATOR FEATURES:

- Controllable conditions and reaction times
- Various pollutant condition simulations
- Unique temperature control capability
- Simultaneous in vitro and in vivo testing
- Steady-state mode enables extended testing times

Contact:
Dr. Ian Gilmour
919-541-0015
gilmour.ian@epa.gov

www.epa.gov/airscience
TECHNICAL PROGRAM

Tuesday 8:00 AM - 9:15 AM
Plenary I

8:00 Welcoming Remarks Athanasios Nenes, Conference Chair, Georgia Institute of Technology

8:05 Can We Tame the Aerosol Uncertainty Monster? Ken Carslaw, University of Leeds
Moderator Peter Adams, Carnegie Mellon University

9:00 Whitby Award Presentation Donald Dabdub, University of California, Irvine

Tuesday 9:00 AM - 4:00 PM
Exhibits Open

Tuesday 9:15 AM - 9:45 AM
Coffee Break

Tuesday 9:45 AM - 11:30 AM
Session 1: Platform

1AC AEROSOL CHEMISTRY
PANZACOLA H 1-3

V. Faye McNeill and Qi Zhang, chairs

1AC.1 9:45 Secondary Organic Aerosol Formation from Acylperoxynitrates (APNs) of Biogenic Aldehydes. TRAN NGUYEN, Kelvin Bates, Matthew Coggon, Xuan Zhang, Zhenfa Zhang, Avram Gold, Jason Sur- ratt, John Crounse, Paul Wennberg, John Seinfeld, California Institute of Technology

1AC.2 10:00 SOA Formation from the Aqueous-phase Reac- tions of Phenolic Compounds. QI ZHANG, Lu Yu, Jeremy Smith, Cort Anastasio, Alexander Laskin, University of California, Davis

1AC.3 10:15 SOA Potential Formation from Whole Gasoline. CHIA-LI CHEN, Ping Tang, Lijie Li, David R. Cocker III, University of California, Riverside
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AC.4</td>
<td>Effect of Temperature and Dilution on SOA Derived from Reaction of Beta-pinene with Nitrate Radical.</td>
<td>CHRISTOPHER BOYD, Lu Xu, Javier Sanchez, Xiaoxi Liu, Wing-Yin Tuet, Greg Huey, Nga Lee Ng, Georgia Institute of Technology</td>
</tr>
<tr>
<td>1AC.5</td>
<td>Photoactivated SOA Formation: Mechanistic Insight from Modeling and Experiments.</td>
<td>V. FAYE MCNEILL, Andrew Sumner, Joseph Woo, Wanyi Li, Nabil Khan, Yi Rao, Columbia University</td>
</tr>
<tr>
<td>1AC.6</td>
<td>Instantaneous NO Effect on Secondary Organic Aerosol Formation during m-Xylene Photooxidation.</td>
<td>LIJIE LI, Ping Tang, Chia-Li Chen, David R. Cocker III, University of California, Riverside</td>
</tr>
<tr>
<td>1AC.7</td>
<td>Incremental Secondary Organic Aerosol Formation at Simulated Atmospheric Reactivities.</td>
<td>MARY KACARAB, William P. L. Carter, David R. Cocker III, University of California, Riverside</td>
</tr>
</tbody>
</table>

1AP AEROSOL PHYSICS

PANZACOLA H 4

Rajan Chakrabarty and William Heinson, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AP.1</td>
<td>Light Scattering by Thickened Percolation Aggregates.</td>
<td>WILLIAM HEINSON, Chris Sorensen, Amit Chakrabarti, Kansas State University</td>
</tr>
<tr>
<td>1AP.2</td>
<td>Wavelength Resolved Polarized Elastic Scattering Measurements from Single Particles.</td>
<td>Jozsef Czege, VASANTHI SWAPRAKASAM, Jay Eversole, Naval Research Laboratory</td>
</tr>
<tr>
<td>1AP.3</td>
<td>Bounds on Aerosol Physical and Optical Properties Using Linear Programming-based Extension of the Quadrature Method of Moments.</td>
<td>ROBERT MCGRAW, Brookhaven National Laboratory</td>
</tr>
<tr>
<td>1AP.4</td>
<td>Linear Electrodynamic Quadrupole Trap for Single Particle Studies.</td>
<td>MATTHEW HART, Erin M. Durke, Jason Edmonds, Jay Eversole, Naval Research Laboratory</td>
</tr>
<tr>
<td>1AP.5</td>
<td>Radiative Properties of Soot Fractal Aggregates Formed by Polydisperse Point-Touch Spherical Particles.</td>
<td>FENGSHAN LIU, Jerome Yon, National Research Council Canada</td>
</tr>
</tbody>
</table>
1AP.6 11:00 High Intensity X-ray Scattering of Nanosized Ice Particles Formed in a Supersonic Nozzle. ANDREW AMAYA, Viraj Modak, Harshad Pathak, Michael Bogan, Hartawan Laksmono, Claudiu Stan, Duane Loh, Raymond Sierra, Anders Nilsson, Jonas Sellburg, Trevor McQueen, Sebastien Boutet, Garth Williams, Marc Messerschmidt, Barbara Wyslouzil, *The Ohio State University*

1AP.7 11:15 Divine Proportion Shape Invariance of DLCA Fractal Aggregates: An Analytical Theory. William Heinson, Amit Chakrabarti, CHRIS SORENSEN, *Kansas State University*

1CC AEROSOLS, CLOUDS, AND CLIMATE
SEBASTIAN I 1

Andy Ault and Shunsuke Nakao, chairs

1CC.2 10:00 In-situ Measurement of the Aerosol Absorption Spectrum as a Function of Particle Size: Implications for Climate Change. CHRISTOPHER ZANGMEISTER, James Radney, *National Institute of Standards and Technology*

1CC.3 10:15 Effects of Global Climate on Photochemical Pollutant Levels Using Climate Downscaling Meteorology and Chemical Transport Model. HONGLIANG ZHANG, Jianlin Hu, David Rasmussen, Zhan Zhao, Shu-Hua Chen, Michael Kleeman, *University of California, Davis*

1CC.4 10:30 Multi-year Analysis of Aerosol Optical Depth and its Impact on Cloud Properties over a Coastal-urban City of South Africa as Retrieved from MODIS. A. JOSEPH ADESINA, Venkataraman Sivakumar, K. Raghavendra Kumar, *University of Kwazulu-Natal, Durban, South Africa*
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:45</td>
<td>1CC.5</td>
<td>Ice Nucleating Particle Emissions from Biomass Combustion and the Potential Importance of Soot Aerosol.</td>
<td>Ezra Levin, Gavin McMeeking, Paul DeMott, Christina McCluskey, Christian Carrico, Shunsuke Nakao, Chelsea Stockwell, Robert J. Yokelson, Sonia Kreidenweis, Colorado State University</td>
</tr>
<tr>
<td>11:00</td>
<td>1CC.6</td>
<td>Adjoint Analysis of Ice Crystal Sensitivity to Heterogeneous Nucleation Spectrum.</td>
<td>Sylvia Sullivan, Benjamin Sheyko, Athanasios Nenes, Georgia Institute of Technology</td>
</tr>
</tbody>
</table>

1HA HEALTH RELATED AEROSOLS

SEBASTIAN I 3

Roby Greenwald and Jun Wang, chairs

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:45</td>
<td>1HA.1</td>
<td>Health Implications Of Aerosols from Asbestos-Bearing Road Pavements Traditionally Used in Southern Brazil.</td>
<td>Ricardo H. M. Godoi, Sérgio J. Gonçalves Jr., Célia Sayama, José M. Reis Neto, László Bencs, Bálint Alfoldy, René Van Grieken, Carlos A. Riedi, Ana Flavia L. Godoi, Guilherme C. Borillo, Yara S. Tadano, Federal University of Parana - Curitiba, PR, Brazil</td>
</tr>
<tr>
<td>10:00</td>
<td>1HA.2</td>
<td>An Analysis of Air Pollution Effects On Health In São Paulo City Through Health Impact Assessment Approach.</td>
<td>Simone Miraglia, Karina Abe, Ricardo Popesku-Junior, Universidade Federal de Sao Paulo, Sao Paulo, Brazil</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Time</td>
<td>Presenter(s)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1HA.4</td>
<td>Estimating Climate and Health Costs from Emissions of On-road Gasoline and Diesel Vehicles.</td>
<td>10:30</td>
<td>SHANTANU JATHAR, Allen Robinson, University of California, Davis</td>
</tr>
<tr>
<td>1HA.5</td>
<td>Aerosol Emissions from Ships Using Heavy Fuel Oil or Diesel Fuel: Composition and Biological Effects on Human Lung Cells.</td>
<td>10:45</td>
<td>RALF ZIMMER-MANN, Sebastian Öder, Tamara Kanashova, Olli Siippula, Saen Sapcariu, Thorsten Streibel, Manuel Jose Arteaga-Salas, Johannes Passig, Hanns-Rudolf Paur, Marco Dilger, Benjamin Stengel, Horst Harndorf, Jorma Jokiniemi, Kelly BeruBe, Erwin Karg, Jürgen Schnelle-Kreis, Jürgen Orasche, Laarnie Müller, Ahmed Rehda, Thomas Gröger, Martin Sklorz, Christian Radischat, Karsten Hiller, Jeroen Buters, Gunnar Dittmar, Helmholtz Zentrum München and Rostock University</td>
</tr>
<tr>
<td>1HA.6</td>
<td>Characterization of Atmospherically Important Organic Radicals in the Gas and Particle Phase.</td>
<td>11:00</td>
<td>STEVEN CAMPBELL, Chiara Giorio, Markus Kalberer, University of Cambridge</td>
</tr>
<tr>
<td>1HA.7</td>
<td>Factors Controlling the Pulmonary Bioaccessibility of Trace Elements in Atmospheric Fine and Ultratine Particles Near an Industrial Site.</td>
<td>11:15</td>
<td>LAURENT ALLEMAN, Saliou Mbengue, Esperanza Perdrix, Aude Pascaud, Pascal Flamant, Mines Douai, SAGE, F-59508 Douai, France</td>
</tr>
<tr>
<td>1IA.1</td>
<td>Relative Contributions of Self-Pollution and On-Road-Pollution to Children's Exposure in School Buses.</td>
<td>9:45</td>
<td>EON LEE, Yifang Zhu, University of California, Los Angeles</td>
</tr>
<tr>
<td>1IA.2</td>
<td>Commuters’ Exposure to PM2.5 and CO2 in Metro Carriages of Shanghai Metro System.</td>
<td>10:00</td>
<td>HAO GU, Bin Xu, Tongji University</td>
</tr>
<tr>
<td>1IA.3</td>
<td>Feasibility of Partial Air Recirculation for Vehicle HVAC System.</td>
<td>10:15</td>
<td>HEEJUNG S. JUNG, Michael Grady, University of California Riverside</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1IA.4</td>
<td>Physical Characteristics of Ultrafine Particles Generated by Electronic Cigarettes.</td>
<td>CHA-CHEN FUNG, Zhongshu Li, Mei Zheng, Yifang Zhu, UCLA</td>
<td></td>
</tr>
<tr>
<td>1IA.5</td>
<td>Investigation of the Reactivity of PAHs Present in Model Indoor Surfaces.</td>
<td>SHOUMING ZHOU, Matthew Forbes, Jonathan Abbatt, University of Toronto</td>
<td></td>
</tr>
<tr>
<td>1IA.6</td>
<td>How Air Quality Metrics and Wireless Technology can Maximize the Energy Efficiency of HVAC in a Working Auditorium.</td>
<td>ANNA LEAVEY, Yong Fu, Mo Sha, Andrew Kutta, Chenyang Lu, Wei-Ning Wang, Bill Drake, Yixin Chen, Pratim Biswas, Washington University in St Louis</td>
<td></td>
</tr>
<tr>
<td>1IA.7</td>
<td>Indoor and Outdoor Endotoxins at Santiago, Chile: Spring 2012 Results.</td>
<td>HECTOR JORQUERA, Francisco Barraza, Gonzalo Valdivia, Lupita Montoya, Pontificia Universidad Catolica de Chile</td>
<td></td>
</tr>
</tbody>
</table>

1UA URBAN AEROSOLS

SEBASTIAN I 2

Andy May and Kelley Barsanti, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1UA.1</td>
<td>Characterizing Particle Emissions from Light Duty Gasoline Vehicles during Different Driving Cycles.</td>
<td>ROYA BAHREINI, Jian Xue, Yang Li, Kent C. Johnson, Thomas D. Durbin, David Quiros, Shao-hua Hu, Tao Huai, Alberto Ayala, Heejung S. Jung, University of California, Riverside</td>
</tr>
<tr>
<td>1UA.2</td>
<td>Assessing the Impact of Driving Pattern on Emission Factor Variability Using a Gasoline Direct Injection Light-duty Passenger Vehicle.</td>
<td>NAOMI ZIMMERMAN, Jon M Wang, Cheol-Heon Jeong, Nathan Hilker, Kelly Saballauskas, Robert Healy, Greg J. Evans, SOCAAR, University of Toronto</td>
</tr>
<tr>
<td>1UA.3</td>
<td>Seasonal and Multi-Year Trends in Vehicle Emissions Measured in a Traffic Tunnel.</td>
<td>ALBERT A. PRESTO, Xiang Li, Timothy Dallmann, Carnegie Mellon University</td>
</tr>
</tbody>
</table>
Real-World Vehicle Emission Factors of Gaseous and Particle Phase Pollutants from High Time Resolution Near-Road Measurements.

JON M. WANG, Cheol-Heon Jeong, Naomi Zimmerman, Nathan Hilker, Robert Healy, Greg J. Evans, SOCAAR, University of Toronto

Characterization of Black Carbon and Polycyclic Aromatic Hydrocarbon Plume Events in Near-Source Microenvironments Using a Mobile Sampling Platform.

Lead Impacts from General Aviation Airports: A Weight of Evidence Approach.

STEPHEN FEINBERG, Jay Turner, Washington University in St. Louis

Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah.

DANIEL MENDOZA, John Lin, Logan Mitchell, James Ehleringer, University of Utah

Tuesday 1:00 PM - 3:00 PM

Session 2: Poster

2AC AEROSOL CHEMISTRY

PANZACOLA F/G

Tran Nguyen, chair

Resolving Complex Hydrocarbon Mixtures Using Gas Chromatography Mass Spectrometry with Soft Ionization.

ARTHUR CHAN, Farhana Hoque, Aviv Amirav, University of Toronto

Effects of Meteorological Conditions on the Formation of Secondary Organic Aerosol from Amine Precursors.

DEREK PRICE, Mary Kacarab, David R. Cocker III, Kathleen Purvis-Roberts, Philip Silva, University of California, Riverside

Geraniol-trans (3,7-dimethylocta-2,6-dien-1-ol) Ozonolysis: Kinetics and Mechanism.

TADEU LEONARDO SOARES E SILVA, State University of Rio de Janeiro
2AC.4 1:00 Photooxidation of Isoprene Epoxydiol (IEPOX)-Derived Secondary Organic Aerosol. KELVIN BATES, Tran Nguyen, Rebecca Schwantes, Xuan Zhang, Matthew Coggon, Richard Flagran, Brian Stoltz, Paul Wennberg, John Seinfeld, Caltech

2AC.5 1:00 SOA Formation from Photooxidation of Individual PAHs and Mixtures. CHIA-LI CHEN, Mary Kacarab, Ping Tang, David R. Cocker III, University of California, Riverside

2AC.7 1:00 Oxidation of Biodiesel Exhaust Particulate Matter with Ozone. JOHN KASUMBA, Britt Holmén, University of Vermont

2AC.8 1:00 Brown Carbon Formation in Secondary Organic Aerosol from Heterogeneous Reactive Uptake of Isoprene Epoxydiols. Ying-Hsuan Lin, Sri Hapsari Budisulistiorini, Kevin Chu, RICHARD SIEJACK, Haofei Zhang, Zhenfa Zhang, Avram Gold, Jason Surratt, Kathryn Kautzman, Towson University

2AC.9 1:00 Determining Extraction Efficiencies for the Trace Analysis of Organics in Airborne Particulate Matter. MORGAN DUNDON, Richard Siejack, Robert Ishakis, Kathryn Kautzman, Towson University

2AC.10 1:00 Kinetics Modeling of the Functionalization and Fragmentation Mechanisms of Aerosol Oxidation. AARON WIEGEL, Kevin Wilson, William Hinsberg, Frances Houle, Lawrence Berkeley National Laboratory

2AC.11 1:00 Chemical Mechanisms of Atmospheric Aging of Secondary Organic Aerosol. PEIJUN TU, Murray Johnston, University of Delaware
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AC.12</td>
<td>Evaporation of and Water Uptake by Sub-10 Nano-meter Dimethylamine-Sulfuric Acid Nanoparticles.</td>
<td>Hui Ouyang, Siqin He, Christopher Hogan Jr.</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>2AC.14</td>
<td>Secondary Organic Aerosol from Aqueous Reactions of Green Leaf Volatiles with Organic Triplet Excited States and Singlet Molecular Oxygen.</td>
<td>Nicole K. Richards-Henderson, Andrew Pham, Kalliat Valsaraj, Cort Anastasio.</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td>2AE.2</td>
<td>Nanoparticle Measurements for the Breathing Zone Model.</td>
<td>Jerome Gilberry, Meaghan McGrath, Jonathan Thomburg.</td>
<td>RTI International</td>
</tr>
<tr>
<td>2AE.3</td>
<td>Release of Airborne Particles from Nanotechnology-enabled Clothing.</td>
<td>Leonardo Calderón, Letao Yang, Kibum Lee, Gediminas Mainelis, Rutgers.</td>
<td>The State University of New Jersey</td>
</tr>
<tr>
<td>2AP.2</td>
<td>Evolution of Capacitance for Agglomerated Nanoparticles during Sintering.</td>
<td>Leo N.Y. Cao, Jing Wang, Heinz Fissan, Sotiris E. Pratsinis, Max L. Eggersdorfer, David Y. H. Pui</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors/Institutions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2AP.3</td>
<td>Gravity-induced Trapping and Aerogelation of Nanoparticles in Flame Reactors.</td>
<td>Rajan K. Chakrabarty, Igor Novosselov, Nicholas Beres, Hans Moosmuller, Chris Sorensen, Christopher Stipe, Desert Research Institute</td>
<td></td>
</tr>
<tr>
<td>2AP.4</td>
<td>The Crossover from Spherical Particle Scattering to Circular Aperture Diffraction in the Limit of Vary Large Spheres.</td>
<td>William Heinson, Chris Sorensen, Amit Chakrabarti, Kansas State University</td>
<td></td>
</tr>
<tr>
<td>2AP.5</td>
<td>Q-space Analysis of Light Scattering by Gaussian Random Spheres</td>
<td>Justin Maughan, William Heinson, Amit Chakrabarti, Chris Sorensen, Kansas State University</td>
<td></td>
</tr>
<tr>
<td>2AP.6</td>
<td>Characterization of Particle Resuspension from Surfaces.</td>
<td>Babak Nasr, Suresh Dhaniyala, Andrea R. Ferro, Goodarz Ahmadi, Sari Paikoff, Clarkson University</td>
<td></td>
</tr>
<tr>
<td>2AP.8</td>
<td>Growth of Small Molecular Clusters: Comparison of Growth Rates Determined from Cluster Appearance Times and Collision–Evaporation Fluxes.</td>
<td>Tinja Olenius, Ilona Riipinen, Katrianne Lehtipalo, Hanna Vehkamäki, University of Helsinki</td>
<td></td>
</tr>
<tr>
<td>2AP.9</td>
<td>Alignment of Aerosolized Glass Fibers by an Applied Electric Field.</td>
<td>Bon Ki Ku, C.S. Lauber, G. J. Deye, Leonid Turkevich, NIOSH</td>
<td></td>
</tr>
</tbody>
</table>

2AQ AIR QUALITY AND CLIMATE IN THE SOUTHEAST US: INSIGHTS FROM RECENT MEASUREMENT CAMPAIGNS

Panama City, FL

Annmarie Carlton, chair

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AQ.2</td>
<td>The Impact of Emissions from Mobile Sources and Biomass Burning on Ambient PM2.5 EC and OC in the SEARCH Network, 1999 - 2013.</td>
<td>Charles Blanchard, George Hidy, Envair</td>
</tr>
</tbody>
</table>
2AQ.3 1:00 The Southeastern Center for Air Pollution and Epidemiology: Results from the Measurement Campaign. LAURA KING, Hongyu Guo, Ting Fang, Vishal Verma, Eric Edgerton, Armistead Russell, Rodney Weber, Georgia Institute of Technology

2AQ.4 1:00 Single Particle Diversity and Its Impact on Heterogeneous Reactivity during the SOAS Field Campaign. ANDREW AULT, Amy Bondy, Rebecca Craig, Rachel O’Brien, Ryan Moffet, Bingbing Wang, Alexander Laskin, Mary Gilles, Kerri Pratt, Victor Nhliyiso, Steve Bertman, Paul Shepson, University of Michigan

2AQ.5 1:00 Radiocarbon Measurements of PM2.5 Total Carbon and Elemental Carbon from Centreville, AL during the SOAS Field Study. ERIC EDGERTON, Yanlin Zhang, Soenke Szidat, Andre Prévôt, Stephanie Shaw, John Jansen, Karsten Baumann, Charles Blanchard, Atmospheric Research & Analysis

2AQ.6 1:00 Chemical Characterization of Atmospheric Fine Aerosol at the Jefferson Street, Atlanta, GA Using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM): Results from Winter, Spring and Summer 2014. WERUKA RATTANAVARAHA, Sri Hapsari Budisulistiorini, Philip Croteau, Karsten Baumann, Eric Edgerton, Manjula Canagaratna, John Jayne, Douglas Worsnop, Stephanie Shaw, Jason Surratt, University of North Carolina at Chapel Hill

2BB BIOMASS BURNING AEROSOL: FROM EMISSIONS TO IMPACTS
PANZACOLA F/G

Sonia Kreidenweis and Ryan Sullivan, chairs

2BB.2 1:00 Quantifying Personal Exposures to Biomass Cookstove Emissions using RTI International’s MicroPEM™ Technology. RYAN CHARTIER, Charles Rodes, J. Randall Newsome, James Carlson, Samuel DeFilipp, Seung-Hyun Cho, Jonathan Thornburg, RTI International
How Fuel and Household Characteristics May Explain Variability in Biomass-burning Cook-stove Emissions in Rural Rajasthan, India. ANNA LEAVEY, Jessica Londeree, Ravi Shrimali, Gautam Yadama, Pratim Biswas, Washington University in St Louis

Impact of Biomass Combustion Activities from Olive Oil Industry on Air Quality in South European Regions. BEGONA ARTINANO, Ana Sanchez de la Campa, Esther Coz, Rocio Fernandez Camacho, Marta Becerril, Pedro Salvador, Rosa Perez Pastor, Susana Garcia Alonso, Jesus de la Rosa, CIEMAT

An Integrated Particulate and Gaseous Emissions Model to Investigate the Effects of Cook-stove Design and Operating Conditions. SAMEER PATEL, Chang Ki Kang, Ahmed Amin Abokifa, Pratim Biswas, Washington University in St Louis

Determining the Concentration of Insoluble and Soluble Species in Seawater using Membrane Filtration – Differential Mobility Analyzer (MF-DMA) Technique. WAJIH UR REHMAN, Ji Yeon Park, Kihong Park, Gwangju Institute of Science and Technology

Effect of Raindrop Size Distribution on Scavenging of Aerosol Particles from Gaussian Air Pollution Plumes Emitted from Point and Line Sources. BORIS KRASOVITOV, Tov Elperin, Andrew Fominykh, Ben-Gurion University of the Negev

2CC.5 1:00 Simulation of Particle Number and Cloud Droplet Concentrations in the Midwestern United States Using WRF-Chem. CAN DONG, Charles Stanier, Robert Bullard, Ashish Singh, University of Iowa

2CC.7 1:00 Atmospheric Impacts of Black Carbon Emissions Reductions through the Strategic Use of Biodiesel. HONGLIANG ZHANG, Kento Magara-Gomez, Michael Olson, Tomoaki Okuda, Keeneth Walz, Michael Kleeman, James Schauer, University of California, Davis

2CC.8 1:00 Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response due to Diminishing Aerosol Emissions. DANIEL WESTERVELT, Larry Horowitz, Vaishall Naik, Denise Mauzerall, Princeton University

2CC.9 1:00 Microscopic Studies of Ice Nucleation. BINGBING WANG, Daniel Knopf, Mary Gilles, Gourihar Kulkarni, Shawn Kathmann, Libor Kovarik, Alexander Laskin, Pacific Northwest National Laboratory

2CH CONTROL TECHNOLOGY
PANZACOLA F/G

Mei Wang and Zhili Zuo, chairs

2CH.1 1:00 Filtration of Combustion Aerosols by Facepiece Respirators and Stationary IAQ Filters. SHUANG GAO, Jin Yong Kim, Michael Yermakov, Xinjian He, Yousef Elmashae, Tiina Reponen, Sergey A. Grinshpun, University of Cincinnati

2CH.2 1:00 The Effect of Air Dilution on WOx Nanoparticle Generation and Thermal Rebound in Filtration. RAHELEH GIVEHCHI, Zhongchao Tan, University of Waterloo

2CH.3 1:00 Filtration Characteristics of Granular Ceramic Filter. MYONG-HWA LEE, Hyun-Jin Choi, Jeong-Uk Kim, Korea institute of Industrial Technology
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors / Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2CH.4</td>
<td>The Effect of Simulated Air Conditions on N95 Respirator Performance.</td>
<td>JOEL RAMIREZ, Patrick O’Shaughnessy, University of Iowa</td>
</tr>
<tr>
<td>2CH.5</td>
<td>Effects of Particle and Spray Droplet Charge on Respirable Dust Capture by Surfactant Sprays.</td>
<td>MEI WANG, Peter Raynor, University of Minnesota</td>
</tr>
<tr>
<td>2CH.8</td>
<td>Evaluation of Sampling Media for Use in a Nanoparticle Respiratory Deposition Sampler.</td>
<td>LEVI MINES, Jae Hong Park, Imali Mudunkotuwa, Vicki Grassian, T. Renee Anthony, Thomas Peters, University of Iowa</td>
</tr>
<tr>
<td>2HA.2</td>
<td>What is Effect of Water Pipe Height on Particulate Formation in Mainstream Waterpipe Smoke?</td>
<td>CINDY DEFOREST HAUSER, Jessica Annonio, Davidson College</td>
</tr>
<tr>
<td>2HA.3</td>
<td>Estimation of Electron Microscopy Image-based Aerodynamic and Diffusion Diameters for Carbon Nanotube Aerosols.</td>
<td>BON KI KU, Pramod Kulkarni, Centers for Disease Control and Prevention, NIOSH</td>
</tr>
<tr>
<td>2HA.4</td>
<td>Formation of Hydroxyl Radical from Cooking and Vehicle Exhaust Particles Extracted in a Cell-free Surrogate Lung Fluid.</td>
<td>SHEXIA MA, Ke Ren, Laiguo Chen, Zhencheng Xu, South China Institute of Environmental Sciences</td>
</tr>
<tr>
<td>2HA.5</td>
<td>Airway-by-Airway Imaging of Particles Deposited in Animal Lungs.</td>
<td>CHRISTOPHER WALLIS, DongYoub Lee, Annalisa Smullin, Anthony Wexler, University of California Davis</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Presenter(s)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>2HA.6</td>
<td>Generating a Pharmaceutical Aerosol with High Charge and Low Device Losses.</td>
<td>Landon Holbrook, Worth Longest, Virginia Commonwealth University</td>
</tr>
<tr>
<td>2HA.9</td>
<td>Evaporation Kinetics of Secondary Organic Aerosols Derived from Engine Exhaust Precursors.</td>
<td>Mohammad Baasiri, Alan Shihaideh, American University of Beirut</td>
</tr>
<tr>
<td>2HA.12</td>
<td>Respiratory Dose Assessment for Heterogeneous Ambient Aerosols.</td>
<td>Chong Kim, Jung-il Choi, USEPA</td>
</tr>
</tbody>
</table>

2IA INDOOR AEROSOLS
PANZACOLA F/G

Tiina Reponen, chair

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2IA.1</td>
<td>High Face Velocity (0.5-1.0 m/s) Penetration of sub-50 nm Nanoparticles through HVAC Fitter Media Used in Residence.</td>
<td>Deqiang Chang, Sheng-Chieh Chen, David Y. H. Pui, China Northeastern University, University of Minnesota</td>
</tr>
</tbody>
</table>
Comparison of Indoor and Outdoor Air Quality in Latino Communities in Peru, Chile, and USA. Wyatt Champion, Francisco Barraza, Hector Jorquera, LUPITA MONTOYA, University of Colorado Boulder

Size-Segregated Mass Concentrations and Elemental Compositions of Particulate Matter (PM) Emitted during Toasting and Cooking. Soudabeh Gorjinezhad, MEHDI AMOUEI TORKMAHALLEH, Melek Keles, Fatma Öztürk, Cansu Azgin, Hediey Sumru Unluievcek, Berfin Tanis, Elif Cihan, Nergis Ozaslan, Nurseli Soy, Middle East Technical University Northern Cyprus Campus

Preliminary Evidence for Aqueous Oxidation of Organic Compounds in Indoor Air. SARA DUNCAN, Yong Lim, Jeffrey R. Kirkland, Barbara Turpin, Rutgers University

Heating and Indoor Air Quality on the Navajo Nation. JOANNA GORDON, John Ortega, Mike Russel, Evan Coffey, Josh Bowen, Ashley Collier, Ricardo Piedrahita, Nick Masson, Margaret Mayer, Barbara Klein, Perry Charley, Michael Hannigan, University of Colorado at Boulder

Emission Patterns of PM and UFP from 3D Printers. Scott Steady, Bill Hoffman, ELLIOTT HORNER, UL Environment

Effects of Walking Factors on Particle Resuspension via Human Walking. Kyung Sul, Yilin Tian, ANDREA R. FERRO, Clarkson University

Variability of Aerosols and Chemical Composition of PM$_{10}$, PM$_{2.5}$ and PM$_{1}$ in the Prague Underground Metro. MICHAEL CUSACK, Jakub Ondrecek, Nicholas Talbot, Jaroslav Schwarz, Vladimir Zdimal, Institute of Chemical Process Fundamentals of the ASCR, v. v

An Experimental Assessment of the Dissociation of Ammonium Nitrate Aerosol. NICHOLAS TALBOT, Vladimir Zdimal, Jakub Ondrecek, Jaroslav Schwarz, PhD candidate

Wintertime Indoor and Outdoor PM2.5 Northern Utah’s Cache Valley. Randy Martin, KORI MOORE, Utah State University
2IA.12 1:00
Using Direct Feedback from IAQ Monitors to Change Human Behavior and Reduce Exposure to PM. SANGEETHA KUMAR, Haley Grassi, Jing Qian, Julia Jacobs, Angela Benedict, Andrea R. Ferro, Clarkson University

2IA.13 1:00
Overview of Air Quality Regulations in South America. ANDRÉ HENRIQUE PEREIRA DE FREITAS LEAL, Lupita Montoya, University of Colorado Boulder

2IM INSTRUMENTATION AND METHODS

PANZACOLA F/G

Rui Li and Amy Sullivan, chairs

2IM.2 1:00
Atmospheric Aerosol Measurement Using Tethered Balloon Package System and Equipment Development. Kang-Ho Ahn, HEE-RAM EUN, Hong-Ku Lee, Lee Gun Ho, Yong-Hee Park, Chi-Young Choi, In-Kyu Hwang, Hanyang University, R. of Korea

2IM.3 1:00
MWCNTs Dispersion and Aerosolization Using EAAA (Electro-static Assist Axial Atomizer). GUN-HO LEE, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, In-Kyu Hwang, Chi-Young Choi, Jin-Kwon Kim, Ellen Kim, II Je Yu, Kang-Ho Ahn, Hanyang University, R. of Korea

2IM.4 1:00
Chemical Analysis of Microliter-sized Liquid Samples Using Ultrasonic Nebulization and Aerosol Mass Spectrometry. KELSEY BOULANGER, Eben Cross, James Hunter, Anthony Carrasquillo, Manjula Canagaratna, John Jayne, Philip Croteau, Jesse Kroll, MIT

2IM.5 1:00
Shear Induced Mixing of Laminar Flows: Implications for Aerosol Measurements. MATTHEW BROWN, Suresh Dhaniyala, Clarkson University

2IM.7 1:00
A New Personal Sampler for Measuring Inorganic Acid Mist and Gases: The Validation Test. CHIH-HSIANG CHIEN, Lin Shou, Alex Theodore, Chang-Yu Wu, Yu-Mei Hsu, Brian Birky, University of Florida
2IM.8 Development of Sheathless Particle Classifier with Electrometer. HIROYUKI YAMADA, Hiroshi Okuda, National Traffic Safety and Environment Laboratory

2IM.9 Standard Test Method for the Measurement of Filtration Efficiency of Electret Facepiece Respirators Challenged with Diesel Exhaust. SWATHI SATISH, Jacob Swanson, David Kittelson, David Y. H. Pui, University of Minnesota

2IM.10 NIOSH Center for Direct Reading and Sensor Technologies. D. Gayle DeBord, MARK D HOOVER, National Institute for Occupational Safety and Health

2IM.11 Detection of Light vs. Heavy Atoms with a Laser Induced Plasma Ionization Source for Single Particle Analysis. ANDREW J. HORAN, Justin Krasnomowitz, Murray Johnston, University of Delaware

2IM.12 Reduced Graphene Oxide: Towards an Absorbing Aerosol Standard. JAMES RADNEY, Christopher Zangmeister, National Institute of Standards and Technology

2IM.13 Electrospray Aerosol Generator with Integrated Soft X-Ray Neutralizer and Usability Enhancements. SHERRIE ELZEY, Jacob Scheckman, Aaron Avenido, Tim Johnson, TSI Incorporated

2NP ADVANCES IN THE PHYSICS AND CHEMISTRY OF NEW PARTICLE FORMATION AND GROWTH PANZACOLA F/G

Jim Smith and Jeff Pierce, chairs

2NP.1 Particle Formation in Vehicle Exhaust: Modelling the Nucleation and Growth. MIKKI DAL MASO, Miska Olin, Topi Ronkko, Jorma Keskinen, Tampere University of Technology, Tampere, Finland

2NP.2 Chemical Mechanisms of Nanoparticle Growth Studied through a Combination of Ambient and Laboratory Measurements. MURRAY JOHNSTON, Bryan R. Bzdak, Joseph DePalma, Andrew J. Horan, University of Delaware
Aerosol Formation Initiated by Nucleation of Radical-Water Complexes. SAMBHAV KUMBHANI, Emily Burrell, Shirts Randall, Jaron Hansen, Brigham Young University

Observation of Sub-3 nm Particles and New Particle Formation Events in Urban Shanghai, China. Shan Xiao, MingYi Wang, JianMin Chen, Xin Yang, QingYan Fu, LIN WANG, Fudan University

Shrinkage of New Atmospheric Particles in an Urban Area of Southern Europe. Elisabeth Alonso-Blanco, F. Javier Gomez-Moreno, Lourdes Nunez, Manuel Pujadas, BEGONA ARTINANO, CIEMAT

Insight into Particle Growth Rates and Controls from Two Years of SMPS and HTDMA Data. MANAS MAHISH, Don Collins, Texas A&M University

Particle Nucleation and Vertical Profiles of 8-15 nm Particles at the DOE Southern Great Plains Facility from 300m to 1000m Above Sea Level. JOHN ORTEGA, James N. Smith, James Greenberg, National Center for Atmospheric Research

Estimating Spatiotemporal Variations of PM$_{2.5}$ over the Pittsburgh Metropolitan Area Using Aerosol Optical Depth. Tao Xue, RICHARD BILONICK, Daniel Connell, Evelyn Talbott, Judith Rager, LuAnn Brink, University of Pittsburgh

An Automated Microenvironmental Aerosol Sampler (AMAS) for Location/Activity Exposure Assessment. CASEY QUINN, David Cate, Dan Miller-Lionberg, Charles Henry, John Volckens, Colorado State University

Impact of Urban Growth Form and Fleet Electrification on Emissions, Concentrations, and Exposures for Nitrogen Oxides and Select Toxic Volatile Organic Compounds. HAOFEI YU, Amy L. Stuart, University of South Florida
2PH.4
1:00
Health Implications of Exposure to Local Traffic-generated Particulate Matter (PM) in a Minority Community: Commuters and Local Residents’ Perspectives. JOHN BANG, Natushia Harris, Paige Presler-Jur, Andrey Khlystov, Dwayne Bell, North Carolina Central University

2PH.5
1:00
E-cigarettes: Aerosol Sampling and Droplet Size Measurement. JOHN MCAUGHEY, Ross Cabot, Caner Yurteri, David Lawson, British American Tobacco

2UA URBAN AEROSOLS
PANZACOLA F/G

Adam Bateman and Paul A. Solomon, chairs

2UA.1
1:00
Urban and Suburban Intermodal Fraction of Atmospheric Aerosol in Winter 2014. JANA KÖZÁKOVÁ, Jan Hovorka, Jaroslav Schwarz, Charles University in Prague

2UA.2
1:00
European Air Pollution Hot-Spot: Evidence of Industrial Plume over a Residential Area. CECILIA LEONI, Jan Hovorka, Charles University in Prague

2UA.3
1:00
Oxidative Potential and Chemical Speciation of Size-resolved Particulate Matter (PM) at Near-freeway and Urban Background Sites in the Greater Beirut Area. NANCY DAHER, Najat A. Saliba, Alan Shihadeh, Malek Jaafar, Rima Baalbaki, Martin Shafer, James Schauer, Constantinos Sioutas, University of Southern California

2UA.4
1:00
Relationship between PAHs and Elemental Composition of Size-segregated Aerosol. JAN BENDL, Jan Hovorka, Jan Topinka, Charles University in Prague

2UA.6
1:00
Assessment of In-cabin Human Exposure to Ultrafine Particles under Different Conditions of Urban Traffic in Salvador, Bahia, Brazil. Egídio Guerreiro, Paulo Pinho, Márcio de Carvalho, Danilo Leão, João Marçal, José Róbson de Luna, Rodrigo Vieira, Lilian Guarieiro, Jailson de Andrade, ANTONIO MIGUEL, University of California, Los Angeles
<table>
<thead>
<tr>
<th>Session Code</th>
<th>Time</th>
<th>Presentation Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2UA.7</td>
<td>1:00</td>
<td>Microcharacterization and Identification of Non-exhaust Particles from On-road Driving and Laboratory Measurements using SEM-EDX Analysis.</td>
<td>Seokhwan Lee, Sunyoup Lee, Hongsuk Kim, Korea Institute of Machinery and Materials</td>
</tr>
<tr>
<td>2UA.8</td>
<td>1:00</td>
<td>Evaluation of Carbonyl Compounds Levels in Residential and Industrial Areas of Tijuana BC, Mexico Air Basin.</td>
<td>Jesus Guerrero-García, Guillermo Rodríguez-Ventura, Ernesto Velez-Lopez, Lilia Hurtado, Javier Emmanuel Castillo-Quíñones, Penelope Quintana, Miguel Zavala, Luisa Molina, Universidad Autonoma de Baja California</td>
</tr>
<tr>
<td>2UA.9</td>
<td>1:00</td>
<td>Atmospheric Aerosols in Southeast Asia: Sources and Impacts.</td>
<td>Ragh Betha, Xian Huang, Rajasekhar Balasubramanian, National University of Singapore</td>
</tr>
<tr>
<td>2UA.10</td>
<td>1:00</td>
<td>Morphological and Elemental Classification of Long-range Transported Fine and Ultrafine Particles by STEM-EDX Individual Particle Analysis.</td>
<td>Shila Maskey, Hoseung Chae, Kihong Park, GIST</td>
</tr>
</tbody>
</table>

Tuesday 3:00 PM - 3:30 PM
Coffee Break

Tuesday 3:30 PM - 5:00 PM
Session 3: Platform

3AC AEROSOL CHEMISTRY
PANZACOLA H 1-3

Sergey Nizkorodov and Manabu Shiraiwa, chairs

<table>
<thead>
<tr>
<th>Session Code</th>
<th>Time</th>
<th>Presentation Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AC.1</td>
<td>3:30</td>
<td>Photochemical Aging of Brown Carbon Aerosols.</td>
<td>Paige Aiona, Hyun Ji Lee, Alexander Laskin, Julia Laskin, SERGEY NIZKORODOV, University of California, Irvine</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors/Institutions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>3AC.3</td>
<td>Aging of Alpha-pinene First-Generation Ozonolysis Products by Reactions with OH.</td>
<td>Ningxin Wang, Spyros Pandis, Neil Donahue, Carnegie Mellon University</td>
<td></td>
</tr>
<tr>
<td>3AC.4</td>
<td>Molecular Corridors Represent the Multiphase Chemical Evolution of Secondary Organic Aerosol.</td>
<td>Manabu Shiraiwa, Thomas Berkemeier, Katherine Schilling, John Seinfeld, Ulrich Poeschl, MPIC</td>
<td></td>
</tr>
<tr>
<td>3AC.6</td>
<td>Organosulfates Formation in Secondary Organic Aerosol Produced from Photooxidation of Various VOCs In the Presence of NOx and Sulfuric Acid Aerosol Using Natural Sunlight.</td>
<td>Jiaying Li, Myoseon Jang, University of Florida</td>
<td></td>
</tr>
</tbody>
</table>

3AE AEROSOL EXPOSURE

SEBASTIAN I 3

Sergey Grinshpun and Jonathan Thornburg, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AE.1</td>
<td>Advances in Nanoparticle Sampling and Analysis Methods.</td>
<td>Gary Casuccio, Traci Lersch, Henry Lentz, Dan Miller-Lionberg, John Volckens, RJ Lee Group, Inc.</td>
</tr>
<tr>
<td>Session</td>
<td>Time</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>3AE.5</td>
<td>4:30</td>
<td>Measurement of Aerosols Generated by Combustion of Different Materials.</td>
</tr>
<tr>
<td>3AE.6</td>
<td>4:45</td>
<td>Indoor Air Quality in Latino Homes in Boulder, Colorado.</td>
</tr>
<tr>
<td>3CC.2</td>
<td>3:45</td>
<td>The Role of Aqueous Chemistry in Cloud Formation: Impact of Oligomerization.</td>
</tr>
<tr>
<td>3CC.3</td>
<td>4:00</td>
<td>Understanding Cloud Condensation Nuclei Mixing States from Flow Tube Experiments.</td>
</tr>
<tr>
<td>3CC.5</td>
<td>4:30</td>
<td>Relating Volatility, Size and Cloud Condensation Nuclei Activation Properties of Longifolene SOA.</td>
</tr>
<tr>
<td>3CC.6</td>
<td>4:45</td>
<td>Aerosol Size Distribution Response to Anthropogenically Driven Historical Changes in Biogenic Secondary Organic Aerosol Formation.</td>
</tr>
</tbody>
</table>
3IA INDOOR AEROSOLS

SEBASTIAN I 4

Jordan Peccia and Lindsey Marr, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>3IA.1</td>
<td>Shorter People May Be Exposed to More Influenza Viruses in Resuspended Dust.</td>
<td>Peeyush Khare, LINSEY MARR, Virginia Tech</td>
</tr>
<tr>
<td>3:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3IA.2</td>
<td>Biofilms and Bioaerosols in Showers. MARIA D. KING, Alexandra Caya, Chloe Wooldridge, Juan Pedro Maestre, Michal Ziv-El, Yassin Hassan, Kerry Kinney, Texas A&M University</td>
<td></td>
</tr>
<tr>
<td>3:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3IA.3</td>
<td>The Influence of Residential Environmental Factors on the Indoor Microbiome. KAREN C. DANNE MILLER, Janneane Gent, Brian Leaderer, Jordan Peccia, Yale University</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3IA.4</td>
<td>Assessing Building Penetration Challenges by Subalpine Wildfires: Juxtaposing Airborne Biomarker Profiles with Microbial Community Analysis. ALINA M. HANDOREAN, Bharath Prithiviraj, Odessa Gomez, Jane Turner, Mark T. Hernandez, University of Colorado Boulder</td>
<td></td>
</tr>
<tr>
<td>4:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3IA.5</td>
<td>Assessing Pollutant Exposures in Rural Homes Using a Filter Forensics Approach. JUAN PEDRO MAESTRE, Shahana Khurshid, Kelli Royse, Sharon Horner, Jeffrey Siegel, Kerry Kinney, The University of Texas at Austin</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3IA.6</td>
<td>Contextualizing Particles on HVAC Filters. JEFFREY SIEGEL, Juan Pedro Maestre, Ying Xu, Shahana Khurshid, Kerry Kinney, University of Toronto</td>
<td></td>
</tr>
<tr>
<td>4:45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3NP ADVANCES IN THE PHYSICS AND CHEMISTRY OF NEW PARTICLE FORMATION AND GROWTH

PANZACOLA H 4

Jim Smith and Robin Stevens, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>3NP.1</td>
<td>Field Deployment of a Size-Resolved Nano CPC Battery to Infer the Composition of Freshly Formed Atmospheric Nuclei in the Boreal Forest. CHONGAI KUANG, Juha Kangaslouma, Daniela Wimmer, Katrianne Lehtipalo, Jian Wang, Markku Kulmala, Tuukka Petäjä, Brookhaven National Laboratory</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Speaker(s)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>3NP.3</td>
<td>Chemical Ionization of Sulfuric Acid Clusters Containing Basic Molecules.</td>
<td>COTY JEN, Jun Zhao, Peter McMurry, David Hanson</td>
</tr>
<tr>
<td>3NP.4</td>
<td>Enhancement in the Production of Nucleating Clusters Due to Dimethylamine and Large Uncertainties in the Thermochemistry of Amine-enhanced Nucleation.</td>
<td>ALEXEY NADYKTO, Jason Herb, Fangqun Yu, Yisheng Xu</td>
</tr>
<tr>
<td>3NP.5</td>
<td>Novel Methods for Determining Free Energies of Molecular Clusters of Water and Sulphuric Acid.</td>
<td>Gabriel Lau, Jake Stinson, Shawn Kathmann, IAN FORD</td>
</tr>
<tr>
<td>3NP.6</td>
<td>New-particle Formation, Growth and Climate-relevant Particle Production in Egbert, Canada: Analysis from one Year of Size-distribution Observations.</td>
<td>JEFFREY PIERCE, Daniel Westervelt, Samuel Atwood, Elizabeth Barnes, Richard Leaitch</td>
</tr>
<tr>
<td>3UA URBAN AEROSOLS</td>
<td>How To Achieve Further PM2.5 Reductions in a Midwestern City? A Combined Modeling and Measurement-Based Analysis of Iowa City, IA.</td>
<td>ROBERT BULLARD, Elizabeth Stone, Charles Stanier, Ashish Singh, Can Dong, Chathurika Rathanyak, Thilina Jayarathne, Scott N. Spak</td>
</tr>
<tr>
<td>3UA.2</td>
<td>Investigation of the Sources and Evolution Processes of Severe Haze Pollution in Beijing in January 2013.</td>
<td>YELE SUN, Qi Jiang, Zifa Wang, Pingqing Fu, Jie Li, Ting Yang, Yan Yin</td>
</tr>
<tr>
<td>3UA.3</td>
<td>Outdoor and Indoor Black Carbon at Multiple Schools in Salt Lake City, Utah.</td>
<td>Jennifer DeWinter, Steven Brown, David Vaughn, PAUL ROBERTS, Sonoma Technology, Inc</td>
</tr>
</tbody>
</table>
Sources and Chemical Composition of Atmospheric Fine Particles in Rabigh, Saudi Arabia.
HAIDER A KHWAJA, Omar S Abu-Rizaiza, Azhar Siddique, Shedrack R Nayebare, Mirza M Hussain, Jahan Zeb, King Abdulaziz University, Saudi Arabia

Chemical Characterization of Time Resolved Haboob Samples from Phoenix, AZ.
AURELIE MARCOTTE, Jershon Eagar, Denise Napolitano, Pierre Herckes, Arizona State University

Silicon is a Nearly Ubiquitous Component of Ambient Nanoparticles.
BRYAN R. BZDEK, M. Ross Pennington, Andrew J. Horan, Christopher A. Zordan, Murray Johnston, University of Delaware

Tuesday 5:00 PM - 6:00 PM
Working Group Meetings 1

Tuesday 6:00 PM - 8:00 PM
Welcome Reception

Wednesday 8:00 AM - 9:15 AM
Plenary II: AEESP Lecture

8:00 AEESP Lecture: Fine Particulate Air Pollution and Human Health: Science, Public Policy, and Controversy
C. Arden Pope III, Brigham Young University
Moderator Robert Griffin, Rice University

9:00 Sinclair Award Presentation, Mercer Award Announcement
Donald Dabdub, University of California, Irvine

Wednesday 9:00 AM - 5:00 PM
Exhibits Open

Wednesday 9:15 AM - 9:45 AM
Coffee Break
Wednesday 9:45 AM - 11:30 AM

Session 4: Platform

4AC AEROSOL CHEMISTRY
PANZACOLA H 4

Andrew Grieshop and Manish Shrivastava, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4AC.1</td>
<td>Explicit Modeling of Multi-generational Aging of Organic Aerosol in an Air Quality Model.</td>
<td>SHAN-TANU JATHAR, Anthony Wexler, Christopher Cappa, Michael Kleeman, University of California, Davis</td>
</tr>
<tr>
<td>4AC.2</td>
<td>Modeling Secondary Organic Aerosol Formation via Partitioning and Aerosol Phase Reactions under Two Phase States: Liquid-liquid Phase Separated and Homogeneously Mixed.</td>
<td>ROSS BEARDSLEY, Myoseon Jang, University of Florida</td>
</tr>
<tr>
<td>4AC.3</td>
<td>Understanding the Sensitivity of SOA Formation to Various Uncertain Modeling Parameters Using a Variance-Based Statistical Approach.</td>
<td>MANISHKUMAR SHRIVASTAVA, Chun Zhao, Yun Qian, Richard Easter, Alla Zelenyuk, Jerome Fast, Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>4AC.4</td>
<td>1D Nanodusty Pulsed Plasma Sectional Chemistry Model for the Study and Control of Particle Generation and Growth.</td>
<td>CARLOS LARRIBA-ANDALUZ, Steven Girshick, University of Minnesota</td>
</tr>
<tr>
<td>4AC.5</td>
<td>Modelling of Amines in the Global Atmosphere: Impacts of Oxidation and Aerosol Uptake.</td>
<td>FANGQUN YU, Gan Luo, University at Albany</td>
</tr>
<tr>
<td>4AC.6</td>
<td>Simulation of the Volatility-Oxygen Content Distribution of Organic Aerosol during the PEGASOS Campaigns.</td>
<td>ELENI KARNEZI, Benjamin Murphy, Spyros Pandis, Carnegie Mellon University</td>
</tr>
<tr>
<td>4AC.7</td>
<td>Dynamic Simulation of Atmospheric Chromium Speciation.</td>
<td>MEHDI AMOUEI TORKMAHALLEH, Soudabeh Gorjinezhad, Middle East Technical University Northern Cyprus Campus</td>
</tr>
</tbody>
</table>
4AP AEROSOL PHYSICS
SEBASTIAN I 4

Chris Hogan and Matthew Berg, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>4AP.1</td>
<td>Classical Nucleation Theory Does Not Correctly Predict the Dependence of Nucleation Rate on Supersaturation.</td>
<td>STEVEN GIRSHICK, University of Minnesota</td>
</tr>
<tr>
<td>4AP.2</td>
<td>Resolving the Surface and Bulk Accommodation of Atmospherically Relevant Compounds with Molecular Dynamics Simulations.</td>
<td>JAN JULIN, Paul M. Winkler, Neil Donahue, Paul E. Wagner, Ilona Riipinen, Stockholm University</td>
</tr>
<tr>
<td>4AP.3</td>
<td>Experimental Study of Light Scattering from Irregularly Shaped Particles.</td>
<td>YULI WANG, Amit Chakrabarti, Chris Sorensen, Kansas State University</td>
</tr>
<tr>
<td>4AP.4</td>
<td>Surface Freezing of n-alkanes.</td>
<td>VIRAJ MODAK, Mitchell Thayer, Barbara Wyslouzil, Sherwin Singer, The Ohio State University</td>
</tr>
<tr>
<td>4AP.5</td>
<td>Experimental Bipolar Diffusion Charging of Spherical and Cylindrical Aerosol Particles with Detailed Characterization of the Charging Ions.</td>
<td>Ranganathan Gopalakrishnan, Peter McMurry, CHRISTOPHER HOGAN JR., University of Minnesota</td>
</tr>
<tr>
<td>4AP.6</td>
<td>Understanding the Drag Force and Mobility of Nonspherical Particles in the Free Molecular Regime.</td>
<td>MINGDONG LI, George Mulholland, Michael Zachariah, University of Maryland</td>
</tr>
<tr>
<td>4AP.7</td>
<td>Evaporation Loss of PM2.5 during Filter Sampling.</td>
<td>CHUEN-JINN TSAI, Chun-Nan Liu, Sih-Fan Lin, Guo-Rui Lee, National Chiao Tung University</td>
</tr>
</tbody>
</table>
4AQ AIR QUALITY AND CLIMATE IN THE SOUTHEAST US: INSIGHTS FROM RECENT MEASUREMENT CAMPAIGNS

SEBASTIAN I 1

Annmarie Carlton and Rob Griffin, chairs

<table>
<thead>
<tr>
<th>4AQ.1</th>
<th>Overview of the NOAA SENEX Field Mission.</th>
<th>9:45</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4AQ.2</th>
<th>DISCOVER-AQ Investigation of Aerosol Impacts on Air Quality over Houston.</th>
<th>10:00</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4AQ.3</th>
<th>Highlights from the St. Louis Air Quality Regional Study (SLAQRS) 2013.</th>
<th>10:15</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4AQ.4</th>
<th>Comparison of the Observed Organosulfates (IEPOX Sulfate and GA Sulfate) in the Southeast US to the Western US during DC3 and SEAC4RS.</th>
<th>10:30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JIN LIAO, Karl D. Froyd, Daniel Murphy, Frank Keutsch, Ge Yu, Paul Wennberg, Jason St. Clair, John Crounse, Armin Wisthaler, Tomas Mikoviny, Jose-Luis Jimenez, Pedro Campuzano-Jost, Douglas Day, CU CIRES- NOAA ESRL</td>
<td></td>
</tr>
</tbody>
</table>

Characterization of Nocturnal Aerosol Formation in Houston during DISCOVER-AQ. H. William Wallace, Yu Jun Leong, Basak Karakurt Cevik, Madeline Camp, James Flynn, Barry Lefer, ROBERT GRIFFIN, Rice University

Exposure of Workers to Mixed Aerosols. EMANUELE CAUDA, Luca Stabile, Giorgio Buonanno, Teresa Barone, NIOSH

Comparison of Personal Sampling and Robotic Sampling Platform to Estimate Personal Exposures in Young Children. JESSICA SAGONA, Marta Hernandez, Zuocheng Wang, Maya Ramagopal, Stuart Shalat, Gediminas Mainelis, Rutgers, The State University of New Jersey
4HA.3 10:15 Internal Airway Percussion (IAP) for Lung Infection Diagnostics. NIMA AFSHA-MOHAJER, Chang-Yu Wu, Hsiu-Wen Tsai, Erin Silverman, Paul Davenport, Satyanarayan Hegde, University of Florida

4HA.5 10:45 Reformulation of Abandoned Wortmannin into Biodegradable Nanoparticles for Lung Cancer Treatment. HSI-WEI YEH, Da-Ren Chen, Virginia Commonwealth University

4HA.6 11:00 Variability of Lung Targeted Aerosol Delivery during High Flow Nasal Cannula Therapy. ROSS WALENGA, Geng Tian, Michael Hindle, Worth Logest, Virginia Commonwealth University

4HA.7 11:15 Detecting Respiratory Infection by 3D Microbial Fingerprints from Exhaled Breath. Fangxia Shen, Xiaoguang Li, Zhuanglei Zou, Jie Xu, Chang-Yu Wu, MAOSHENG YAO, Peking University

4IM INSTRUMENTATION AND METHODS

PANZACOLA H 1-3

Derek Oberreit and Chongai Kuang, chairs

4IM.1 9:45 Liquid Atomization via a Newly Designed, Multi-notched Electrospray Head. JINGJIE ZHANG, Da-Ren Chen, Virginia Commonwealth University

4IM.2 10:00 A Non-Specific Monodisperse Aerosol Generation System. JONATHAN ESHBAUGH, Francisco Romay, Shanna Ratnesar-Shumate, Paul Dabisch, Johns Hopkins University Applied Physics Laboratory

4IM.3 10:15 Performance Study of Miniature Cyclones with Multiple Inlets. DI LIU, Zhenzhong Zhang, Ta-Chih Tsiao, Da-Ren Chen, Virginia Commonwealth University
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4IM.5</td>
<td>Performance of Inertial Impactor with Varying Geometries.</td>
<td>Huan Li, William Faulkner, John Haglund, Texas A&M University</td>
</tr>
<tr>
<td>4IM.6</td>
<td>Trapping of Individual Airborne Absorbing Particles Using a Counterflow Nozzle and Photophoretic Trap for Continuous Sampling and Analysis.</td>
<td>Yong-Le Pan, Chuji Wang, Steven Hill, Joshua Santarpia, US Army Research Lab</td>
</tr>
<tr>
<td>4IM.7</td>
<td>Collection of Droplets by Centrifugal Filter.</td>
<td>Hiroaki Matsuhashi, Shusuke Nakajima, Mikio Kumita, Takafumi Seto, Hidenori Higashi, Yoshio Otani, Kanazawa University</td>
</tr>
<tr>
<td>4UA.1</td>
<td>Contribution of Biomass Use for Renewable Energy to Particulate Matter Formation.</td>
<td>Marc Carreras-Sospedra, Donald Dabdub, Jack Brower, Rob Williams, University of California, Irvine</td>
</tr>
</tbody>
</table>

Assessing Aerosol Mixing State through Single Particle Mass Spectrometry and Particle-Resolved Modeling. NICOLE RIEMER, Swarnali Sanyal, Robert Healy, Greg J. Evans, John Wenger, University of Illinois at Urbana-Champaign

On the Importance of New Particle Formation Events as a Source for Cloud Condensation Nuclei in an Urban Environment. ANNA WONASCHUETZ, Julia Burkart, Anselm Demattio, Carmen Dameto de Espana, Robert Wagner, Georg Reischl, Gerhard Steiner, Regina Hitzenberger, University of Vienna

Influence of the Manaus Plume on Aerosol Size Distribution and Cloud Condensation Nuclei (CCN) during GoAmazon – Preliminary Results. FAN MEI, Jian Wang, Jason Tomlinson, Jennifer Comstock, John Hubbe, Mikhail Pekour, John Shilling, Chongai Kuang, Karla Longo, Scot Martin, Beat Schmid, Pacific Northwest National Laboratory

Heterogeneous Reaction Kinetics of Isoprene-Derived Epoxides. THERAN P. RIEDEL, Cassandra Gaston, Sri Hapsari Budisulistiorini, Ying-Hsuan Lin, Zhenfa Zhang, Avram Gold, Joel A. Thornton, Jason Surratt, University of North Carolina at Chapel Hill

Reactions of Condensed Phase Alkoxy Radicals. ANTHONY CARRASQUILLO, Kelly Daumit, Jesse Kroll, MIT
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5AC.3</td>
<td>1:30</td>
<td>Hydrolysis and Gas-particle Partitioning of Organic Nitrates Formed in Environmental Chamber Experiments.</td>
<td>Jeffrey Bean, Lea Hildebrandt Ruiz, University of Texas at Austin</td>
</tr>
<tr>
<td>5AC.5</td>
<td>2:00</td>
<td>Organic Peroxide Formation from Photooxidation of Methylglyoxal in the Aqueous Phase.</td>
<td>Yong Lim, Barbara Turpin, Rutgers University</td>
</tr>
<tr>
<td>5AC.6</td>
<td>2:15</td>
<td>Uptake and Transformation of Glyoxal on Mineral Dust Particles.</td>
<td>Xiaoli Shen, Yue Zhao, Dao Huang, Zhongming Chen, Peking University</td>
</tr>
<tr>
<td>5AC.7</td>
<td>2:30</td>
<td>Effect of Ammonia on Glyoxal SOA in Inorganic Aqueous Seed Particles.</td>
<td>Eleanor Waxman, Alexander Laskin, Jay Slowik, Aurelia Maxut, Siyuan Wang, Jian Zhen Yu, Theodore Koenig, Julia Laskin, Andre Prévôt, Urs Baltensperger, Barbara Noziere, Josef Dommen, Rainer Volkamer, Universität von Colorado</td>
</tr>
<tr>
<td>5AC.8</td>
<td>2:45</td>
<td>Molecular Composition of Aged Secondary Organic Aerosol Generated from a Mixture of Biogenic Volatile Compounds Using Ultrahigh Resolution Mass Spectrometry.</td>
<td>Ivan Kourt-Cheh, Chiara Giorio, Brendan Mahon, Jean-François Doussin, Nicolas Maurin, Aline Gratien, Edouard Panqui, Sebastien Morales, Manuela Cirtog, Juho Aalto, Taina Ruuskanen, Markku Kulmala, Markus Kalberer, University of Cambridge</td>
</tr>
</tbody>
</table>
5AQ AIR QUALITY AND CLIMATE IN THE SOUTHEAST US: INSIGHTS FROM RECENT MEASUREMENT CAMPAIGNS

SEBASTIAN / 1

Ann Middlebrook and Raul Martinez, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Time</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5AQ.1</td>
<td>BVOC Oxidation Products Measured by SV-TAG Reveal Differences in Chemistry and Partitioning between Natural and Polluted Environments Forming Secondary Organic Aerosol (SOA).</td>
<td>1:00</td>
<td>ALLEN H. GOLDSTEIN, Gabriel Isaacman, Lindsay Yee, Nathan Kreisberg, Suzanne Simoes de Sa, Scot Martin, Lizabeth Alexander, Brett Palm, Weixui Hu, Pedro Campuzano-Jost, Douglas Day, Jose-Luis Jimenez, Thien Khoi Nguyen, Annmarie Carlton, Juarez Viegas, Antonio O. Manzi, Rodrigo A. F. Souza, Maria Oliveira, Paulo Artaxo, Joel Brito, Eric Edgerton, Karsten Baumann, Susanne Hering, University of California, Berkeley</td>
</tr>
<tr>
<td>5AQ.3</td>
<td>Seasonal Characterization of Atmospheric Organic Aerosol at the Look Rock Site, Great Smoky Mountains National Park during 2013 Using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM).</td>
<td>1:30</td>
<td>SRI HAPSARI BUDISULISTIORINI, Xinxin Li, Philip Croteau, Manjula Canagaratna, Solomon Bairai, Roger Tanner, Stephanie Shaw, Eladio Knipping, John Jayne, Zhenfa Zhang, Avram Gold, Jason Surratt, University of North Carolina at Chapel Hill</td>
</tr>
<tr>
<td>5AQ.4</td>
<td>Sources of primary and secondary organic aerosol during the Southeast Atmosphere Study.</td>
<td>1:45</td>
<td>ELIZABETH STONE, Anusha Priyadarshani Silva Hettiyadura, John Groenenboom, Thilina Jayarathne, University of Iowa</td>
</tr>
</tbody>
</table>
5AQ.5 2:00 Chemical Characterization of Organic Aerosol during SOAS Using High Resolution Aerosol Mass Spectrometer. LU XU, Hongyu Guo, Christopher Boyd, Kate Cerully, Aikaterini Bougiatioti, Laura King, Rodney Weber, Athanasios Nenes, Nga Lee Ng, Georgia Institute of Technology

5AQ.6 2:15 Chemical Characterization of Isoprene- and Monoterpene-Derived SOA Tracers in PM2.5 Collected from Centerville, AL, during SOAS 2013. MATTHIEU RIVA, Lindsay Yee, Sri Hapsari Budisulistiorini, Eric Edgerton, Stephanie Shaw, Eladio Knipping, Allen H. Goldstein, Zhenfa Zhang, Avram Gold, Jason Surratt, University of North Carolina at Chapel Hill, Chapel Hill, NC

5AQ.7 2:30 Initial Field Deployments of a Volatility and Polarity Separator (VAPS) for Organic Aerosol Characterization. RAUL MARTINEZ, David Hagan, Yaping Zhang, Dhruv Mitroo, Michael Walker, Lu Hu, Munkhbayar Baasandorj, Dylan Millet, Brent Williams, Washington University in St. Louis

5AQ.8 2:45 Measurements of Atmospheric Amines and Ammonia with a Chemical Ionization Mass Spectrometer (CIMS). SHANHU LEE, Yi You, Roxana Sierra-Hernández, Joost de Gouw, Abigail Koss, Karsten Baumann, Eric Edgerton, Kent State University

5BB BIOMASS BURNING AEROSOL: FROM EMISSIONS TO IMPACTS

SEBASTIAN I 2

Sonia Kreidenweis and Ryan Sullivan, chairs

5BB.1 1:00 The Current State and Future of Wildfire Smoke and Air Quality Modeling. TIMOTHY BROWN, Narasimhan (Sim) Larkin, Pete Lahm, Desert Research Institute

5BB.2 1:15 Constraining Emissions from Open Burning Sources and Their Atmospheric Impacts. CHRISTINE WIEDINMYER, Serena H. Chung, Robert J. Yokelson, Elena McDonald-Buller, Tomohiro Oda, Christopher Elvidge, Louisa Emmons, John Orlando, National Center for Atmospheric Research
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:45</td>
<td>5BB.4</td>
<td>Constraints on Smoke Injection Height, Source Strength, and Transports from MISR and MODIS.</td>
<td>Ralph Kahn, Maria values Martin, Mariya Petrenko, Mian Chin, NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>2:00</td>
<td>5BB.5</td>
<td>Climate Change and Carbon Emissions from Wildland Fires in the Southern United States.</td>
<td>Scott Goodrick, USDA Forest Service</td>
</tr>
<tr>
<td>2:15</td>
<td>5BB.6</td>
<td>Projecting the Impacts of Climate Change on Wildfire-driven Air Quality over the Southeastern U.S..</td>
<td>Uma Shankar, Jeffrey Prestemon, Aijun Xiu, Kevin Talgo, Bok Baek, Dongmei Yang, Mohammad Omari, University of North Carolina at Chapel Hill</td>
</tr>
<tr>
<td>2:30</td>
<td>5BB.7</td>
<td>Quantify the Impact of Biomass Burning Aerosols on Regional Climate over the Southeastern USA.</td>
<td>Peng Liu, Yongtao Hu, Athanasios Nenes, Armistead Russell, Georgia Institute of Technology</td>
</tr>
<tr>
<td>2:45</td>
<td>5BB.8</td>
<td>WRAP Fire Tools and Support for Smoke Management Programs, Land Managers, and Air Quality Planning in the Western U.S..</td>
<td>Tom Moore, Chen Bin, WRAP/WESTAR</td>
</tr>
</tbody>
</table>

Wednesday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00</td>
<td>5CH.1</td>
<td>Unsteady Particle Loading Behavior of Filter Media.</td>
<td>Qiang Wang, Xiuli Lin, Da-Ren Chen, Virginia Commonwealth University</td>
</tr>
<tr>
<td>1:15</td>
<td>5CH.2</td>
<td>Effect of Nanofibers on Collection Performance of Air Filters.</td>
<td>Hisashi Yuasa, Takashi Yoshitake, Takafumi Seto, Yoshio Otani, Kanazawa university</td>
</tr>
<tr>
<td>1:30</td>
<td>5CH.3</td>
<td>Artifacts in Filter Penetration Measurements Associated with Multiple Charging of Particles.</td>
<td>Meilu He, Suresh Dhaniyala, Matthew Wagner, Clarkson University</td>
</tr>
</tbody>
</table>
5CH.4
1:45
Evaluation of Metallic Filter Media for High Temperature Filtration Application. QISHENG OU, James Warner, Matti Maricq, David Y. H. Pui, University of Minnesota

5CH.5
2:00
Impact of Relative Humidity on HVAC Filters Loaded with Hygroscopic and Non-hygroscopic Particles. JAMES MONTGOMERY, Sheldon Green, Steven Rogak, University of British Columbia

5CH.6
2:15
Electrostatic Collection of Tribocharged Lunar Dust Simulants at Elevated Vacuum Levels. NIMA AFSHAR-MOHAJER, Chang-Yu Wu, Nicoleta Soroaica-Hickman, University of Florida

5CH.7
2:30
Nanoparticle Penetration through Facepiece Respirators. YUE ZHOU, Yung-Sung Cheng, Lovelace Respiratory Research Institute

5CH.8
2:45
How Small Can We Go: Exploring the Limitations and Scaling Laws of Air-Microfluidic Particulate Matter Sensors. OMID MAHDAVIPOUR, Ben Gould, Dorsa Fahimi, David Liederman, Son Duy Nguyen, David Woolsey, Paul A. Solomon, Richard White, Lara Gundel, Igor Paprotny, University of Illinois at Chicago

5IM INSTRUMENTATION AND METHODS
PANZACOLA H 1-3

Fan Mei and Patrick O'Shaughnessy, chairs

5IM.1
1:00
Effect of Upstream Flow Mixing on Charging Capability of Aerosol Neutralizers. JAMES FARNSWORTH, Hans-Georg Horn, TSI Incorporated

5IM.2
1:15
A New Device for Measuring Number Concentration of Solid Particulate Matter. AARON AVENIDO, Jason Johnson, Brian Osmondson, Hans-Georg Horn, TSI Incorporated

5IM.3
1:30
Statistical Comparison of Particle Counts. PATRICK O'SHAUGHNESSY, University of Iowa
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5IM.4</td>
<td>Laboratory Characterization of an Ultrafine Condensation Particle Counter Using a Perfluorinated Compound Working Fluid: Particle Size, Charge, and Composition Dependent Responses down to 1 nm.</td>
<td>CHONGAI KUANG, Juha Kangaslouma, Daniela Wimmer, Jian Wang, Markku Kulmala, Tuukka Petäjä, Brookhaven National Laboratory</td>
</tr>
<tr>
<td>5IM.5</td>
<td>A Portable Water Condensation Particle Counter.</td>
<td>SUSANNE HERING, Steven Spielman, Gregory Lewis, Aerosol Dynamics Inc.</td>
</tr>
<tr>
<td>5IM.6</td>
<td>A Filter Sensor for Determining the Fractal Dimension of Nanosized Agglomerates and Fibrous Carbon Nanotubes.</td>
<td>SHENG-CHIEH CHEN, Jing Wang, Heinz Fissan, David Y. H. Pui, University of Minnesota</td>
</tr>
<tr>
<td>5IM.7</td>
<td>Accurate Control of Relative Humidity for HTD-MA Particle Growth Rate Measurements.</td>
<td>STEVEN CEVAER, Suresh Dhaniyala, Clarkson University</td>
</tr>
<tr>
<td>5IM.8</td>
<td>Instrumental and Methodological Complex for Inhalation Intake Assessment of Radioactive Gas-Aerosol Mixtures.</td>
<td>ANDREW KAREV, Alexander Tsovianov, FMBC</td>
</tr>
</tbody>
</table>

5PH LINKING AEROSOLS WITH PUBLIC HEALTH IN A CHANGING WORLD
SEBASTIAN I 4

R. Weber and Sherri Hunt, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5PH.1</td>
<td>Linking Air Pollution and Health Effects: The Role of Semi-volatile Components of Ultrafine Ambient Particles.</td>
<td>MICHAEL KLEINMAN, Andrew Keebaugh, David Herman, Vishal Verma, Payam Pakbin, Loyda Mendez, Constantinos Sioutas, University of California, Irvine</td>
</tr>
<tr>
<td>5PH.3</td>
<td>Sources of Reactive Oxygen Species (ROS) Generation Properties of Atmospheric Aerosols in Southeastern United States.</td>
<td>VISHAL VERMA, Ting Fang, Laura King, Hongyu Guo, Rodney Weber, Georgia Institute of Technology</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Presenters</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>5PH.5</td>
<td>Investigating the Health Effects of Fresh and Aged Traffic Aerosols: Linking Particle Oxidative Potential to Chemical Composition.</td>
<td>NGA LEE NG, Matthew Kollman, Vasileios Papapostolou, Joy Lawrence, Sriram Suresh, Vishal Verma, Rodney Weber, Armistead Russell, Petros Koutrakis, Georgia Institute of Technology</td>
</tr>
<tr>
<td>5PH.6</td>
<td>Linking Nitrogen Oxide Chemistry and Aerosol over the Last Decade in San Joaquin Valley, California.</td>
<td>SALLY PUSEDE, Ronald Cohen, UC Berkeley</td>
</tr>
<tr>
<td>5PH.8</td>
<td>Mutagenicity of PAH and Nitro-Derived: An Assessment of Respirable Particulate Matter in Rio de Janeiro, Brazil.</td>
<td>Claudia Rainho, SERGIO CORREA, Jose Mazzei, Claudia Aiub, Israel Felzenszwalb, Rio de Janeiro State University</td>
</tr>
</tbody>
</table>

Wednesday 3:00 PM - 3:30 PM
Coffee Break

Wednesday 3:30 PM - 5:00 PM
Session 6: Platform

6AC.1 A Smog Chamber-Flow Tube Study of the Direct Photolysis of Model Biogenic and Anthropogenic SOA. | SANDRA BLAIR, Scott A. Epstein, Amanda MacMillan, Sergey Nizkorodov, University of California, Irvine |
<table>
<thead>
<tr>
<th>Session Code</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6AC.4</td>
<td>4:15</td>
<td>Sources of Black Carbon Particles at a Rural Site Southeast of London, UK during ClearfLo (Winter 2012).</td>
<td>Leah Williams, Scott Herndon, John Jayne, Andrew Freedman, William Brooks, Jonathan Franklin, Paola Massoli, Edward Fortner, Puneet Chhabra, Mark Zahniser, Timothy Onasch, Manjula Canagaratna, Douglas Worsnop, Nga Lee Ng, Lu Xu, Berk Knighton, Manvendra Dubey, Allison Aiken, Kyle Gorkowski, Shang Liu, Dominique Young, Dantong Liu, James Allan, Aerodyne Research, Inc.</td>
</tr>
<tr>
<td>6AC.5</td>
<td>4:30</td>
<td>Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China.</td>
<td>Xiang Ding, Quanfu He, Xinxing Wang, Jian Zhen Yu, Neil Donahue, Guangzhou Institute of Geochemistry, CAS</td>
</tr>
<tr>
<td>6AC.6</td>
<td>4:45</td>
<td>Chemical Composition of Marine Emissions from Mediterranean Seawaters: Results from a Mesocosm Study.</td>
<td>Jorge Pey, H. Langley DeWitt, Brice Temime-Roussel, Aurelie Même, Bruno Charriere, Richard Sempere, Anne Delmont, Sébastien Mas, David Parin, Clemente Rose, Allison Schwier, Badr Rmili, Karine Sellegris, Barbara D’Anna, Nicolas Marchand, Aix-Marseille Université, CNRS, LCE FRE 3416</td>
</tr>
</tbody>
</table>
6AQ AIR QUALITY AND CLIMATE IN THE SOUTHEAST US:
INSIGHTS FROM RECENT MEASUREMENT CAMPAIGNS

SEBASTIAN I 1

Karsten Baumann and Neha Sareen, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6AQ.1</td>
<td>Identifying Precursors and Aqueous Organic Aerosol Formation Pathways in the Humid, Photochemically-Active Southeastern US during the SOAS Campaign.</td>
<td>NEHA SAREEN, Annmarie Carlton, Barbara Turpin, Rutgers University</td>
</tr>
<tr>
<td>6AQ.2</td>
<td>Particle Water and pH in the Southeastern US.</td>
<td>HONGYU GUO, Lu Xu, Kate Cerully, Aikaterini Bougiatioti, Shannon Capps, Annmarie Carlton, Shanhu Lee, Nga Lee Ng, Michael Bergin, Athanasios Nenes, Rodney Weber, Georgia Institute of Technology</td>
</tr>
<tr>
<td>6AQ.4</td>
<td>Estimation of Organo-Sulfur in PM$_{2.5}$ via Isotope Dilution ICPMS and Ion Chromatography.</td>
<td>ERIC EDGERTON, Karsten Baumann, Mike Fort, Stephanie Shaw, John Jansen, Atmospheric Research & Analysis</td>
</tr>
<tr>
<td>6AQ.5</td>
<td>Constraints on the Parameters Dictating Organic Aerosol Volatility from Dual Thermo-denuder Field Measurements in the Southeastern US.</td>
<td>PROVAT SAHA, Andrey Khlystov, Andrew Grieshop, North Carolina State University</td>
</tr>
<tr>
<td>6AQ.6</td>
<td>Aqueous Sources of Secondary Organic Aerosol in the Southeast Atmosphere Study (SAS). V.</td>
<td>FAYE MCNEILL, Jason Surratt, Annmarie Carlton, Havala Pye, Columbia University</td>
</tr>
</tbody>
</table>
6BB BIOMASS BURNING AEROSOL: FROM EMISSIONS TO IMPACTS

SEBASTIAN I 2

Allison Aiken and Lindsay Hatch, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>6BB.1</td>
<td>3:30</td>
<td>How Well Do Laboratory Studies Represent Microphysical Properties of Soot Emitted from Wildfires?</td>
<td>Rajan K. Chakrabarty, Nicholas Beres, Hans Moosmuller, Swarup China, Claudio Mazzoleni, Manvendra Dubey, Li Liu, Michael I Mishchenko, Desert Research Institute</td>
</tr>
<tr>
<td>6BB.2</td>
<td>3:45</td>
<td>Optical and Physical Properties of Biomass Burning Aerosols – Linking Laboratory and Field Measurements.</td>
<td>Allison Aiken, Manvendra Dubey, Shang Liu, Claudio Mazzoleni, Gavin McMeeking, Ezra Levin, Paul DeMott, Sonia Kreidenweis, Robert J. Yokelson, Allen Robinson, Neil Donahue, Christopher Cappa, Leah Williams, Nga Lee Ng, Douglas Worsnop, Timothy Onasch, Los Alamos National Lab</td>
</tr>
<tr>
<td>6BB.4</td>
<td>4:15</td>
<td>Fluoride Emissions from Biomass Burning.</td>
<td>Thilina Jayaratne, Chelsea Stockwell, Robert J. Yokelson, Shunsuke Nakao, Elizabeth Stone, University of Iowa</td>
</tr>
<tr>
<td>6BB.5</td>
<td>4:30</td>
<td>Smoke Marker Ratios from Controlled Laboratory Burns, Prescribed Burns, and Wildfires.</td>
<td>Amy P. Sullivan, Sonia Kreidenweis, Bret Schichtel, Jeffrey Collett, Colorado State University</td>
</tr>
<tr>
<td>6BB.6</td>
<td>4:45</td>
<td>Impacts of Transboundary Peatland Burning Smoke on In Situ Acidity of Urban Aerosols.</td>
<td>Shiguo Jia, Wei Hong Fan, Choon Nam Ong, Jeffrey Reid, Liya Yu, National University of Singapore</td>
</tr>
</tbody>
</table>
6EP AEROSOL SOURCES FROM EMERGING ENERGY TECHNOLOGIES AND PRODUCTION

SEBASTIAN I 3

Akua Asa-Awuku and David Cocker, chairs

6EP.1 3:30
Airborne Measurements of Biogenic and Anthropogenic Secondary Organic Aerosol Formation in the Oil Sands Region of Alberta. JOHN LIGGIO, Katherine Hayden, Peter Liu, Amy Leithead, Samar Moussa, Jason O’Brien, Shao-Meng Li, Environment Canada

6EP.2 3:45
Winter Fine Particle Haze Episodes in the Bakken Oil and Gas Production Region. ASHLEY EVANOSKI-COLE, Anthony Prenni, Derek Day, Misha Schurman, Amy P. Sullivan, Yi Li, Barkley Sive, Yong Zhou, Jenny Hand, Kristi Gebhart, Bret Schichtel, Jeffrey Collett, Colorado State University

6EP.3 4:00
Amines and Their Degradation Products from Post-Combustion Carbon Capture. STEPHANIE SHAW, Annette Rohr, Eladio Knipping, Electric Power Research Institute

6EP.4 4:15
Effects of Global Warming Mitigation Strategies in Major Energy Sectors on Primary and Secondary Aerosol. Michael MacKinnon, MARC CARRE-RAS-SOSPEDRA, Jack Brouwer, Donald Dabdub, University of California, Irvine

6EP.5 4:30

6EP.6 4:45
6IM INSTRUMENTATION AND METHODS

PANZACOLA H 1-3

Fred Bretche and Hagen Telg, chairs

6IM.1 3:30 Design and Testing of an Inhalable Particle Spectrometer. KIMBERLY ANDERSON, Mwangi Ndonga, David Leith, Jordan Rath, Azer Yalin, John Volckens, Colorado State University

6IM.2 3:45 A Small, Sensitive, Light-weight, and Disposable Aerosol Spectrometer for Balloon and UAV Applications. Ru-Shan Gao, HAGEN TELG, Timothy Bates, Richard McLaughlin, Laurel Watts, Steven Ciciora, James Johnson, Joshua P. Schwarz, Anne Perring, Andrew Rollins, Troy Thornberry, David Fahey, NOAA/CIRES

6IM.3 4:00 High Speed Size Distribution Measurements of Aerosol Particles. Michael Pikridas, Chongai Kuang, Steven Spielman, Susanne Hering, JIAN WANG, Brookhaven National Laboratory

6IM.4 4:15 A Liquid Nebulization / Differential Mobility Analysis / Transmission Electron Microscopy Approach to Evaluate Nanoparticles in Environmentally-Relevant Water Matrices. BRIAN MADER, Mark Ellefson, Sue Wolf, 3M Company

6IM.5 4:30 Development of a Miniature Plate Differential Mobility Analyzer (Mini-plate DMA). QIAOLING LIU, Da-Ren Chen, Virginia Commonwealth University

6IM.6 4:45 Initial Field Deployment of a Custom Multi-Channel Tandem Differential Mobility Analyzer (mc-TDMA). CHRISTOPHER OXFORD, Yang Wang, Steven Dhawan, David Hagan, Dhruv Mitroo, Pratim Biswas, Brent Williams, Washington University in St. Louis
6PH LINKING AEROSOLS WITH PUBLIC HEALTH IN A CHANGING WORLD
SEBASTIAN I 4
V. Verma and Nga Lee (Sally) Ng, chairs

6PH.1 SPARTAN: An Emerging Global Aerosol Network.
3:30
GRAYDON SNIDER, Crystal Weagle, Randall Martin, Aaron van Donkelaar, Clement Akoshile, Paulo Artaxo, Jeff Brook, Brent Holben, Ralph Kahn, Nofel Lagrosas, Puji Lestari, Vanderlei J. Martins, Eduardo J. Quel, Yinon Rudich, Abdus Salam, S.N. Tripathi, Zhang Qiang, Michael Brauer, Aaron Cohen, Mark D. Gibson, Yang Liu, Dalhousie University

3:45
FORREST LACEY, Daven Henze, University of Colorado, Boulder

6PH.3 A Reduced-Complexity, Variable Grid Resolution Model for PM2.5 Transport and Transformation.
4:00
CHRISTOPHER TESSUM, Jason Hill, Julian Marshall, University of Minnesota

6PH.4 Linking Air Quality Health Impacts and Electricity Capacity Planning.
4:15
PAUL KERL, Wenxian Zhang, Juan Moreno-Cruz, Athanasios Nenes, Matthew Reagan, Armistead Russell, Joel Sokol, Valerie Thomas, Georgia Institute of Technology

6PH.5 Reducing Global Mortality from PM$_{2.5}$. JOSHUA APTE, Julian Marshall, Lawrence Berkeley National Laboratory

6PH.6 Development and Application of a Markov Chain Model for Predicting Influenza Risk and Control in an Office Environment.
4:45
PARHAM AZIMI, Brent Stephens, Illinois Institute of Technology

Wednesday 5:00 PM - 6:00 PM
Working Group Meetings 2

Wednesday 6:00 PM - 7:00 PM
Annual Business Meeting
Thursday 8:00 AM - 9:15 AM
Plenary III: Friedlander Lecture

8:00 Friedlander Lecture: Linking Tailpipe to Ambient: Atmospheric Evolution of Combustion Emissions
Allen L. Robinson, Carnegie Mellon University

Moderator Sonia Kreidenweis, Colorado State University

9:00 Friedlander Award Presentation, AAAR Fellows, IARA Fellows
James Schauer, University of Wisconsin

Thursday 9:00 AM - 3:30 PM
Exhibits Open

Thursday 9:15 AM - 9:45 AM
Coffee Break

Thursday 9:45 AM - 11:30 AM
Session 7: Platform

7AQ AIR QUALITY AND CLIMATE IN THE SOUTHEAST US: INSIGHTS FROM RECENT MEASUREMENT CAMPAIGNS
SEBASTIAN I 1

Steve Brown and Alexis Attwood, chairs

7AQ.1 Changes in Visibility and Local Radiative Forcing in the Southeast U.S. Linked to Decreased Aerosol Sulfate Mass.
ALEXIS ATTWOOD, Rebecca Washenfelder, Weiwei Hu, Nick Wagner, Allison McComiskey, Pedro Campuzano-Jost, Douglas Day, Brett Palm, Suzane Simoes de Sa, Charles Brock, Eric Edgerton, Karsten Baumann, Jose-Luis Jimenez, Steven G. Brown, CU CIRES- NOAA ESRL
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>7AQ.3</td>
<td>Multivariate Analysis of Historical Trends in Condensed Phase Liquid Water in the Southeastern United States.</td>
<td>THIEN KHOI NGUYEN, Annmarie Carlton, Shannon Capps, Rutgers University</td>
</tr>
<tr>
<td>7AQ.6</td>
<td>Chemical Climatology of the Southeastern United States, 1999-2013.</td>
<td>George Hidy, CHARLES BLANCHARD, Karsten Baumann, Eric Edgerton, Stephanie Shaw, Eladio Knipping, John Jansen, Shelley Tanenbaum, Justin Walters, Ivar Tombach, Envair</td>
</tr>
<tr>
<td>7AQ.7</td>
<td>Aerosol Optical Properties in the Ultraviolet Spectral Region during the Southern Oxidant and Aerosol Study.</td>
<td>REBECCA WASHENFELDER, Alexis Attwood, Charles Brock, Steven G. Brown, University of Colorado and NOAA</td>
</tr>
</tbody>
</table>
7BA BIOAEROSOLS AND HOMELAND SECURITY

SEBASTIAN I 4

Sergey Grinshpun and Vera Samburova, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7BA.1</td>
<td>9:45</td>
<td>Development of a Novel Microscope Spectrofluorometer for Individual Bioparticle Characterization.</td>
<td>DONALD R. HUFFMAN, J. Alex Huffman, University of Arizona and University of Denver</td>
<td></td>
</tr>
<tr>
<td>7BA.2</td>
<td>10:00</td>
<td>Physico-chemical qualification and refinement of a new portable bio aerosols collector: Biodosi.</td>
<td>ROLAND SARDA-ESTEVE, Jean-Maxime Roux</td>
<td>CEA</td>
</tr>
<tr>
<td>7BA.4</td>
<td>10:30</td>
<td>Airborne Measurements of Bioaerosol Across the Southern U.S.</td>
<td>ANNE PERRING, Darrel Baumgardner, Mark T. Hernandez, Joshua P. Schwarz, Ru-Shan Gao, Greg Kok, Gavin McMeeking, David Fahey</td>
<td>CU CIERES- NOAA ESRL</td>
</tr>
<tr>
<td>7BA.5</td>
<td>10:45</td>
<td>Analysis of Atmospheric Biological Particles with High-Resolution Microscopy Techniques.</td>
<td>VERA SAMBUROVA, Alison Murray, Anna Gannet Halar, Xufei Yang, Barbara Zielinska</td>
<td>Desert Research Institute</td>
</tr>
<tr>
<td>7BA.6</td>
<td>11:00</td>
<td>Development of a Passive Bioaerosol Sampler Using Piezoelectric Polymer.</td>
<td>JENNIFER THERKORN, Jerry Scheinbeim, Gediminas Mainelis, Rutgers, The State University of New Jersey</td>
<td></td>
</tr>
<tr>
<td>7BA.7</td>
<td>11:15</td>
<td>Efficiency of Virus Collection with the Novel G-II Bioaerosol Collector.</td>
<td>Jovan Pantelic, Michael Grantham, JING YAN, Fengjie Liu, Sheryl Ehrman, Donald Milton</td>
<td>University of Maryland School of Public Health</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7BB.1</td>
<td>Observations of Wildfire Smoke and Ozone at the Mt. Bachelor Observatory in Central Oregon.</td>
<td>Dan Jaffe, Nicole Wigder, Pao Baylon, Jon Hee, Qi Zhang, Shan Zhou, Sonya Collier, Lawrence Kleinman, Arthur J. Sedlacek, University of Washington, Bothell, WA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7BB.2</td>
<td>Aerosol Chemistry and Processing at Mt. Bachelor Summit: Influences from Wildfire Plumes.</td>
<td>Shan Zhou, Sonya Collier, Jon Hee, Nicole Wigder, Dan Jaffe, Lawrence Kleinman, Arthur J. Sedlacek, Qi Zhang, University of California, Davis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7BB.5</td>
<td>Investigation of Chemical and Physical Perturbations to Organic Aerosol Present in Biomass Burning Plumes over Prescribed Fires in South Carolina.</td>
<td>Andrew May, Taehyoung Lee, Gavin McMeeking, Sheryl K. Akagi, Amy P. Sullivan, Shawn P. Urbanski, Robert J. Yokelson, Sonia Kreidenweis, Colorado State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Time</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>7BB.7</td>
<td>Polluted vs Clean: Chronic Nitrogen Deposition Affects on Emissions from Burning of Forest Litter. Michael Giordano, David R. Weise, AKUA ASA-AWUKU, University of California, Riverside</td>
<td>11:15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7CA CARBONACEOUS AEROSOLS IN THE ATMOSPHERE
PANZACOLA H 1-3
Shane Murphy and James Radney, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7CA.1</td>
<td>Secondary Organic Aerosol Formation at an Urban Downwind Location in Long Island, New York. SHAN ZHOU, Sonya Collier, Jianzhong Xu, Fan Mei, Jian Wang, Yin-Nan Lee, Arthur J. Sedlacek, Stephen Springston, Qi Zhang, University of California, Davis</td>
<td>9:45</td>
<td></td>
</tr>
<tr>
<td>7CA.2</td>
<td>Evidence of Ambient Aqueous SOA Formation in the Po Valley, Italy. AMY P. SULLIVAN, Natasha Hodas, Barbara Turpin, Kate Skog, Frank Keutsch, Stefano DeCesari, M. Cristina Facchini, Jeffrey Collett, Colorado State University</td>
<td>10:00</td>
<td></td>
</tr>
<tr>
<td>7CA.4</td>
<td>Modeling Regional Secondary Organic Aerosol from Isoprene in Southeast United States Using the Master Chemical Mechanism. Jingyi Li, Qi YING, Texas A&M University</td>
<td>10:30</td>
<td></td>
</tr>
<tr>
<td>7CA.5</td>
<td>Characterization of Organic Aerosol in Severe Haze Episodes Using FTIR during Fall 2013 in Beijing, China. Xiaoying Li, Kathryn George, Caiqing Yan, MEI ZHENG, Ann Dillner, Peking University</td>
<td>10:45</td>
<td></td>
</tr>
</tbody>
</table>
7CA.6
11:00
Instrument Intercomparison of Black Carbon Measurements and Correlations with Gas and Aerosol Composition during an Urban Field Study.
MICHAEL WALKER, Brent Williams, Raul Martinez, Yaping Zhang, Dhruv Mitroo, David Hagan, Steven Dhawan, Li Du, Jay Turner, Hongyu Guo, Laura King, Rodney Weber, Lu Hu, Munkhbayar Baasandorj, Dylan Millet, Gavin McMeeking, *Washington University in St. Louis*

7CA.7
11:15

7NM NANOPARTICLES AND MATERIALS SYNTHESIS
SEBASTIAN I 3

Mark Swihart and David Cocker, chairs

7NM.1
9:45
Collisional Growth Below 2 nm in Flame Aerosol Reactors. JIAXI FANG, Yang Wang, Pai Liu, Pratim Biswas, *Washington University in St Louis*

7NM.2
10:00
Flame-driven Aerosol Synthesis of Multicomponent Metal and Non-Oxide Semiconductor Nanoparticles. Di Qi, Singh Saurabh, Munish Sharma, MARK SWIHART, *University at Buffalo (SUNY)*

7NM.3
10:15
Kinetics of Sub 3 nm Titanium Dioxide Particle Formation in an Aerosol Reactor during the Thermal Decomposition of Titanium Isopropoxide (TTIP). YANG WANG, Pai Liu, Tandeep Chadha, Jiaxi Fang, Pratim Biswas, *Washington University in St Louis*

7NM.4
10:30
Lanthanide Doped Silica Nanospheres – Surface Sampling in Deposition Studies. ERIN M. DURKE, Wesley Gordon, Amanda Jenkins, Jason Edmonds, *Edgewood Chemical Biological Center*
7NM.5 Near-road Modeling and Measurement of Cerium-containing Aerosol Generated by nanoparticle Diesel Fuel Additive Use. BRETT GANTT, Shamia Hoque, Robert Willis, Kathleen Fahey, Juana Delgado-Saborit, Roy M. Harrison, Garnet Erdakos, Prakash Bhave, K. Max Zhang, Kasey Kovalcik, Havala Pye, U.S. EPA

7NM.6 A Liquid Nebulization / Differential Mobility Analysis (LN/DMA) Based Method for the Quantification of Nanomaterials in Environmentally-Relevant Water Matrices. BRIAN MADER, Mark Ellefson, Sue Wolf, 3M Company

7NM.7 Aminated Reduced Graphene Oxide-Titanium Dioxide Nanocomposites (AGOTi) for Carbon Dioxide Capture and Photoreduction. YAO NIE, Wei-Ning Wang, Yi Jiang, John Fortner, Pratim Biswas, Washington University in St. Louis

7NP ADVANCES IN THE PHYSICS AND CHEMISTRY OF NEW PARTICLE FORMATION AND GROWTH

7NP.3 Chemical Mechanisms Behind the Isoprene Suppression of Biogenic New Particle Formation. SHANHU LEE, Yi You, Janek Uin, Alex Guenther, Joost de Gouw, William Brune, Paul Wennberg, Alex Teng, Tran Nguyen, Jason St. Clair, John Crounse, Pawel Misztal, Gabriel Isaacman, Allen H. Goldstein, Karsten Baumann, Eric Edgerton, Kent State University

www.AAAR.org
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Speakers/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7NP.4</td>
<td>Atmospheric Nanoparticle Growth, Particle Phase Reactions and Particle Phase State. TAINA</td>
<td>YLI-JUUTI, Ilona Riipinen, Ulrich Poeschl, Manabu Shiraiwa, Max Planck Institute for Chemistry</td>
</tr>
<tr>
<td>7NP.5</td>
<td>Observation of Water Vapor Uptake by Dimethylamine-Sulfuric Acid Cluster Ions in the Sub 2 nm Size Range via Ion Mobility Spectrometry-Mass Spectrometry.</td>
<td>Jikku Thomas, Siqin He, Joseph DePalma, Carlos Larriba-Andaluz, Murray Johnston, CHRISTOPHER HOGAN JR., University of Minnesota</td>
</tr>
<tr>
<td>7NP.6</td>
<td>Particle Formation from Methanesulfonic Acid and Ammonia/Amines via Laboratory Experiments, Ab Initio Calculations, and Modeling Studies.</td>
<td>HAIHAN CHEN, Mychel E. Varner, Andrew Martinez, Veronique Perraud, Michele J. Ezell, Kristine Arquero, Jeremy Home, Benny Gerber, Donald Dabdub, Barbara J. Finlayson-Pitts, University of California, Irvine</td>
</tr>
<tr>
<td>7NP.7</td>
<td>New Particle Formation in the Volatility Basis Set. NEIL DONAHUE, Wayne Chuang, Ismael Kenneth Ortega Colomer, Carnegie Mellon University</td>
<td></td>
</tr>
</tbody>
</table>

Thursday 11:30 AM - 12:15 PM
Light Take-Away Lunch

Thursday 12:15 PM - 1:45 PM
Session 8: Poster

8AC AEROSOL CHEMISTRY
PANZACOLA F/G
Kate Cerully, chair

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Speakers/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8AC.1</td>
<td>Chlorine-initiated SOA Formation from Biogenic VOCs. CHRISTOPHER LIM, Kelsey Boulanger, Jesse Kroll, MIT</td>
<td></td>
</tr>
<tr>
<td>8AC.2</td>
<td>Products Formed during the Heterogeneous Oxidation of Polycyclic Aromatic Hydrocarbons in an Atmospheric Chamber. KLARA ONDRUSO-VA, Richard E. Cochran, Haewoo Jeong, Alena Kubatova, University of North Dakota</td>
<td></td>
</tr>
<tr>
<td>Session Code</td>
<td>Time</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>8AC.3</td>
<td>12:15</td>
<td>Molecular Composition and Photochemical Aging of Alpha-Pinene SOA and Alpha-Humulene SOA Generated Under Nocturnal and Diurnal Conditions.</td>
</tr>
<tr>
<td>8AC.4</td>
<td>12:15</td>
<td>Characterization of Organic Precursors and Products during Aqueous Hydroxyl Radical Oxidation of Po Valley, Italy and Fresno, CA Fog Water.</td>
</tr>
<tr>
<td>8AC.5</td>
<td>12:15</td>
<td>Secondary Organic Aerosol from Gas Phase Methylsiloxane Oxidation: Products and Reaction Mechanisms.</td>
</tr>
<tr>
<td>8AC.6</td>
<td>12:15</td>
<td>Effect of Ambient Primary Organic Aerosols on Secondary Organic Aerosol Formation.</td>
</tr>
<tr>
<td>8AC.7</td>
<td>12:15</td>
<td>Spectroscopy of Cloud-Processed Aerosols: Glyoxal Oligomers.</td>
</tr>
<tr>
<td>8AC.8</td>
<td>12:15</td>
<td>A Study of the Aqueous Phase Processing of Organic Aerosols through Compound Specific Stable Isotope Analysis.</td>
</tr>
<tr>
<td>8AC.9</td>
<td>12:15</td>
<td>Optical Properties of Water Soluble Organic Carbon (WSOC) in Atmospheric Aerosols and Fog Waters.</td>
</tr>
<tr>
<td>8AC.10</td>
<td>12:15</td>
<td>Surface-specific Chemical Reactions for Atmospheric Surfactants Observed Directly with Synchrotron-based XPS.</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8AC.11</td>
<td>Identification and Characterization of Visible Absorption Components in Methylglyoxal-Ammonium Sulfate Mixtures.</td>
<td>W. SEAN MCGIVERN, Thomas C. Allison, James Radney, Christopher Zangmeister, National Institute of Standards and Technology</td>
</tr>
<tr>
<td>8AC.12</td>
<td>Gas-phase Oxidation of Naphthalene, Acenaphthylene and Acenaphthene Initiated by the Nitrate Radical: Mechanistic Study and SOA Formation.</td>
<td>MATTHIEU RIVA, Manuela Cirtog, Emilie Perraudin, Bénédicte Picquet-Varrault, Eric Villenave, EPOC, Université Bordeaux, France</td>
</tr>
<tr>
<td>8AC.13</td>
<td>Chemical Characterization of Gas- and Aerosol-Phase Products from Isoprene Ozonolysis in Presence of Acidic Aerosol: Re-examination of Secondary Organic Aerosol Formation.</td>
<td>Matthieu Riva, SRI HAPSARI BUDISULISTIORINI, Tashana Detwiler, Zhenfa Zhang, Avram Gold, Jason Surratt, University of North Carolina at Chapel Hill, Chapel Hill, NC</td>
</tr>
</tbody>
</table>

8AQ AIR QUALITY AND CLIMATE IN THE SOUTHEAST US: INSIGHTS FROM RECENT MEASUREMENT CAMPAIGNS

PANZACOLA F/G

Rob Griffin, chair

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8AQ.1</td>
<td>Exploring Differences in Simulated PM$_{2.5}$ Between CMAQ and CAMx during the 2013 Southeast Atmosphere Study.</td>
<td>RICK SAYLOR, Barry Baker, Pius Lee, Li Pan, NOAA Air Resources Laboratory</td>
</tr>
<tr>
<td>8AQ.2</td>
<td>Investigating Chemical Reaction Pathways in the SE US Using Comprehensive Gas Chromatography.</td>
<td>KELLEY C. BARSANTI, Melissa J. Roskamp, Wentai Luo, Lindsay E. Hatch, James F. Pankow, Portland State University</td>
</tr>
</tbody>
</table>

8AQ.5 12:15 Southern Oxidant and Aerosol Study (SOAS); A Modelling Perspective. PETROS VASILAKOS, Yongtao Hu, Jack Lin, Lu Xu, Nga Lee Ng, Armistead Russell, Athanasios Nenes, Georgia Institute of Technology

8BA BIOAEROSOLS AND HOMELAND SECURITY
PANZACOLA F/G
Alex Huffman, chair

8BA.1 12:15 Characterization of a Rotating Drum System for Bioaerosol Studies in Biocontainment. MICHAEL SCHUIT, Shanna Ratnesar-Shumate, Jamie Kline, John Yeager, Kristin Bower, Paul Dabisch, NBACC

8BA.2 12:15 Preferential Aerosolization of Different Strains of a Swine Pathogen: Streptococcus Suis. LÉA GAUTHIER-LEVESQUE, Laetitia Bonifait, Phillipa Perrott, Nathalie Turgeon, Marc Veillette, Caroline Duchaine, Université Laval, Canada

8BA.4 12:15 Emissions and Dispersion Bioaerosol in Four Sites During Spring-Summer at Tijuana, Mexico. LILIA HURTADO, Guillermo Rodriguez, Miguel Zavala, Penelope Quintana, Luisa Molina, Bertha Landeros, Mirna Brito, Universidad Autonoma de Baja California, Tijuana, Mexico

8BA.6 12:15 In Vitro Aerosolized Antigen Dosimetry Lung Models. AYESHA MAHMOOD, John Dye, US Army Medical Research Institute for Infectious Disease
8BA.7 12:15 Evaluation of a Low-cost Micro-Channel Aerosol Collector for Bioaerosols in a Pilot Study. IGOR NOVOSSELOV, Enertechnix Inc

8BA.8 12:15 Viral and Bacterial Microbiome of Air in a Daycare Center. AARON PRUSSIN II, Kyle Bibby, Linsey Marr, Virginia Tech

8BA.10 12:15 Generation and Characterization of Large Particle Aerosols Using the Center Flow Tangential Aerosol Generator for Nonhuman Primate Aerosol Models. KYLE BOHANNON, Matthew Lackemeyer, Jens Kuhn, Jiro Wada, Lisa Hensley, Peter Jahrling, Reed Johnson, NIAID

8BA.11 12:15 Non-Human Primate Model Development Using Large Particle Aerosolized Cowpox Virus. MATTHEW LACKEMEYER, Kyle Bohannon, Amy Papaneri, Gary Sparks, Reed Johnson, Peter Jahrling, NIAID

8BA.12 12:15 Quantum Cascade Laser Cavity Ring Down Spectroscopy: New Method for the Characterization and Detection of Aerosols. Erin M. Durke, ANGELA M. BUONAUGURIO, Jason Edmonds, Edgewood Chemical Biological Center

8BA.13 12:15 Simultaneous Real-time Fluorescence and Microscopy Measurements of Bioaerosols during the BIODETECT 2014 Campaign in Paris Area. DOMINIQUE BAISNEE, Michel Thibaudon, Raphaelle Baumier, Gavin McMeeking, Greg Kok, David O’Connor, John Sodeau, J. Alex Huffman, Walfried Lassar, Kyle Pierce, Martin Gallagher, Ian Crawford, Georges Salines, Roland Sarda-Esteve, CEA
8BA.14 BIODETECT 2014 Campaign in Paris Area: Overview of the Experimental Strategy and Preliminary Results. ROLAND SARDA-ESTEVE, J. Alex Huffman, Martin Gallagher, Michel Thibaudon, Dominique Baisnee, Raphaelle Baumier, Gavin McMeeking, Greg Kok, John Sodeau, David O’Connor, Ian Crawford, Michael Flynn, Sampo Saari, Ulrich Poeschl, Olivier Favez, Tanguy Amodeo, Jean Sciare, Nicolas Bonnaire, Walfried Lassar, Kyle Pierce, Cédric Chou, Allan Bertram, Georges Salines, Jean-Maxime Roux, et al., CEA

8BA.15 BIODETECT 2014: Ambient Observations by a Comprehensive Suite of Light-induced Fluorescence Techniques during Summer Near Paris, France. WALFRIED LASSAR, Roland Sarda-Esteve, Kyle Pierce, Martin Gallagher, Ian Crawford, John Sodeau, David O’Connor, Gavin McMeeking, Greg Kok, Ulrich Poeschel, Jean Sciare, Dominique Baisnee, Sampo Saari, J. Alex Huffman, University of Denver, CO

8BA.16 A Global Overview of Measurements of Fluorescent Biological Particles Using Ultraviolet Aerodynamic Particle Sizer (UVAPS) and Wideband Integrated Bioaerosol Sensor (WIBS). KYLE PIERCE, Niall Robinson, Ian Crawford, Martin Gallagher, David Healy, David O’Connor, John Sodeau, Miia Hiltunen, Markku Kulmala, Warren Stanley, Paul Kaye, Carolyn J. Schumacher, Paulo Artaxo, Meinrat O Andreae, J. Alex Huffman, University of Denver

8BA.17 Seasonal and Spatial Variation of Bioaerosols in Midwestern United States. CHATHURIKA RATHANYAKE, Nervana Metwali, Zach Baker, Peter Thorne, Patrick O’Shaughnessy, Thilina Jayarathne, Pam Kostle, Elizabeth Stone, University of Iowa

8BA.18 Evaluation of the WIBS-4A for Biodefense-Related Applications. ELIZABETH CORSON, Jonathan Eshbaugh, David Drewry, Johns Hopkins University Applied Physics Laboratory
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>8BA.19</td>
<td>Leveraging Real Time Fluorescence Pattern Recognition of Airborne Biological Particles a National Reconnaissance and Database of Water Damaged Buildings.</td>
<td>Darrel Baumgardner, Kevin McCabe, Greg Kok, Gary Granger, Matthew Coghill, MARK T. HERNANDEZ</td>
<td>University of Colorado Boulder</td>
</tr>
<tr>
<td>8BB.1</td>
<td>Contribution of Biomass Burning to the Total Organic Aerosol in the Eastern Mediterranean.</td>
<td>AIKATERINI BOUGIATIOTI, Iasonas Stavroulas, Evangelia Kostenidou, Francesco Canonaco, Spyros Pandis, Athanasios Nenes, Nikolaos Mihalopoulos</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>8BB.2</td>
<td>Assessment of Alternatives to Indoor Stove Use on the Navajo Nation.</td>
<td>WYATT CHAMPION, Barbara Klein, Perry Charley, Avery Denny, James McKenzie, Kathleen Stewart, Paul A. Solomon, Lupita Montoya</td>
<td>University of Colorado Boulder</td>
</tr>
<tr>
<td>8BB.4</td>
<td>Climatic Implications of Peat Fire Emissions.</td>
<td>Adam Watts, Rajan K. Chakrabarty, Vera Samburova, HANS MOOSMULLER</td>
<td>Desert Research Institute</td>
</tr>
<tr>
<td>Session</td>
<td>Time</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>8BB.6</td>
<td>12:15</td>
<td>Characterization of Emissions from the Combustion of Solid Fuels Used in the Navajo Nation and Others relevant to Developing Communities.</td>
<td>Charles James, Sandra Garcia-Fine, Barbara Ward, Wyatt Champion, Lupita Montoya, University of Colorado Boulder</td>
</tr>
</tbody>
</table>

8CA CARBONACEOUS AEROSOLS IN THE ATMOSPHERE PANZACOLA F/G

Shuka Schwarz, chair

<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8CA.1</td>
<td>12:15</td>
<td>Measured Optical Absorption and Scattering Coefficients of Agglomerates of Coal Fly Ash and Powdered Activated Carbon.</td>
<td>Tian Xia, Akosua Miller, Herek Clack, University of Michigan</td>
</tr>
<tr>
<td>8CA.2</td>
<td>12:15</td>
<td>Predicting Ambient Aerosol Thermal Optical Reflectance OC, EC and TC Measurements from Infrared Spectra.</td>
<td>Ann Dillner, Satoshi Takahama, University of California, Davis</td>
</tr>
<tr>
<td>8CA.3</td>
<td>12:15</td>
<td>Uncertainties in Global Aerosol and Climate Forcings from Biofuel Emissions.</td>
<td>John Ko-Dros, Catherine Scott, Salvatore Farina, Jeffrey Pierce, Colorado State University</td>
</tr>
<tr>
<td>8CA.4</td>
<td>12:15</td>
<td>Laboratory Evaluation of Black Carbon Aerosol Deposition to Snow.</td>
<td>Larry Hermanson, Joshua P. Schwarz, Anne Perring, Milos Markovic, David Fahey, NOAA/CIRES</td>
</tr>
<tr>
<td>8CA.5</td>
<td>12:15</td>
<td>Primary and Secondary Organic Aerosol during Severe Haze Episodes in January 2013 in Beijing, China.</td>
<td>Caiqing Yan, Mei Zheng, Xiaoying Li, Huaiyu Fu, Xiang Ding, Quanfu He, Xinming Wang, Peking University</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8CA.8</td>
<td>Evaluation of Black Carbon and Carbon Monoxide Levels at Low Traffic Sites in Tijuana-Tecate, Mexico Air Basin.</td>
<td>Jesus Guerrero-García, Guillermo Rodríguez-Ventura, JAVIER EMMANUEL CASTILLO-QUIÑONES, Lilía Hurtado, Penelope Quintana, Miguel Zavala, Luisa Molina, Universidad Autónoma de Baja California</td>
<td></td>
</tr>
<tr>
<td>8CA.9</td>
<td>Global Modeling of SOA: The Use of Different Mechanisms for Aqueous Phase Formation.</td>
<td>GUANGXING LIN, Joyce Penner, Sanford Sillman, Akinori Ito, University of Michigan</td>
<td></td>
</tr>
<tr>
<td>8CA.11</td>
<td>Molecular Characterization of Optically Active Organo-Nitrogen Species in Organic Aerosol.</td>
<td>CHRIS STANGL, Murray Johnston, University of Delaware</td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Time</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8CO.1</td>
<td>12:15</td>
<td>Measured and Modeled Biodiesel Exhaust from Diesel Vehicles: A MOVES2010b Evaluation.</td>
<td>JIM DUNSHEE, Britt Holmén, University of Vermont</td>
</tr>
<tr>
<td>8CO.2</td>
<td>12:15</td>
<td>Emissions of IVOC and SVOC from Mobile Sources Using Online Electron Impact Mass Spectrometry.</td>
<td>JONATHAN FRANKLIN, Eben Cross, Jesse Kroll, Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>8CO.4</td>
<td>12:15</td>
<td>Predicting Particle Number Emissions from Hybrid-Electric Vehicle Engine Restart Events.</td>
<td>KAREN SENTOFF, Britt Holmén, Matt Conger, University of Vermont</td>
</tr>
<tr>
<td>8CO.5</td>
<td>12:15</td>
<td>Physicochemical Assessment of Exhaust Emissions from a Light-duty Gasoline Direct Injection Engine Operated with Conventional and Ethanol-blended Fuels.</td>
<td>NAOMI ZIMMERMAN, Manuel Ramos, Cheol-Heon Jeong, Krystal J. Godri-Pollitt, James S. Wallace, Greg J. Evans, SOCAAR, University of Toronto</td>
</tr>
<tr>
<td>8CO.6</td>
<td>12:15</td>
<td>Physical and Chemical Characterization of Fine Particles from Biomass Burning Process (Woods and Rice Straw).</td>
<td>HEE-JOO CHO, Shila Maskey, Arom Seo, Kihong Park, GIST</td>
</tr>
</tbody>
</table>
8EP AEROSOL SOURCES FROM EMERGING ENERGY TECHNOLOGIES AND PRODUCTION
PANZACOLA F/G

Akua Asa-Awuku, chair

8EP.1 Development of New PM Test Protocol and Characterization of PM Formation and Growth from Natural Gas Turbines. NICHOLAS GYSEL, William A. Welch, Chia-Li Chen, J. Wayne Miller, David R. Cocker III, University of California Riverside

8EP.2 Particle Number and Composition Differences From Conventional and Emerging Vehicle Technology on Varying Aromatic and High Octane Fuels. DANIEL SHORT, Diep Vu, Tyler Berte, Georgios Karavalakis, Thomas D. Durbin, Akua Asa-Awuku, University of California, Riverside

8EP.3 The Impact of Radioactive Charging on the Microphysical Evolution and Transport of Radioactive Aerosols. PETROS VASILAKOS, Yong-Ha Kim, Sotira Yiacoymi, Costas Tsouris, Jeffrey Pierce, Athanasios Nenes, Georgia Institute of Technology

8IM INSTRUMENTATION AND METHODS
PANZACOLA F/G

Igor Paprotny and Brent Williams, chairs

8IM.1 Evaluating Elemental and Organic Carbon composition of Size-Segregated Combustion Particles Using the Electrical Low Pressure Impactor. PATRICIA FRITZ, Shida Tang, David Guerrieri, Brian P. Frank, Marilyn Wurth, Daniel Hershey, New York State Dept. of Environmental Conservation

8IM.2 Design of a Novel Open-path Aerosol Extinction Cavity Ringdown Spectrometer and Initial Data from Deployment at NOAA's Atmospheric Observatory. TIMOTHY GORDON, Nick Wagner, Mathews Richardson, Daniel Law, Daniel Wolfe, Charles Brock, Frank Erdesz, Daniel Murphy, NOAA
<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8IM.3</td>
<td>12:15</td>
<td>Advances in Speciating Highly Oxygenated Organic Aerosol Using In-situ Thermal Desorption Semi-volatile Aerosol Gas Chromatography (SV-TAG) with On-line Derivatization.</td>
<td>Gabriel Isaacman, NATHAN KREISBERG, Lindsay Yee, David Worton, Rebecca Wernis, Susanne Hering, Allen H. Goldstein, University of California, Berkeley</td>
</tr>
<tr>
<td>8IM.4</td>
<td>12:15</td>
<td>Inversion of Multi-channel Light Scattering Data for Particle Size Distribution Measurements.</td>
<td>MARK KANAPARTHI, Ishara Jayasuriya, Suresh Dhaniyala, Clarkson University</td>
</tr>
<tr>
<td>8IM.5</td>
<td>12:15</td>
<td>Real-time and On-line Screening Method for Outgassing-materials Using Soft X-ray.</td>
<td>CHANG HYUK KIM, Young Tae Sul, David Y. H. Pui, University of Minnesota</td>
</tr>
<tr>
<td>8IM.6</td>
<td>12:15</td>
<td>Evaluation of Nano-sized Silica Size Standards.</td>
<td>SHIGERU KIMOTO, William Dick, David Y. H. Pui, Daryl Roberts, University of Minnesota</td>
</tr>
<tr>
<td>8IM.7</td>
<td>12:15</td>
<td>Design and Operational Optimisation of Pneumatic Sampler for Resuspension Chamber.</td>
<td>MIROSLAV KLÁN, Jan Hovorka, Martin Civiš, Charles University in Prague</td>
</tr>
<tr>
<td>8IM.8</td>
<td>12:15</td>
<td>Online Particle Separation and Shape Measurement Using Pulsed-Field DMA.</td>
<td>MINGDONG LI, George Mulholland, Michael Zachariah, University of Maryland</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
<td>Affiliation</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8IM.12</td>
<td>Development Of An Online Measurement For Soluble And Total Cu In PM2.5.</td>
<td>DONGBIN WANG, Martin Shafer, James Schauer, Constantinos Sioutas</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>8IM.13</td>
<td>Charge Distributions of Arbitrary Shaped Particles Charged by the Unipolar Diffusion Charger in the EAD and NSAM.</td>
<td>DREW THOMPSON, David Y. H. Pui</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>8IM.14</td>
<td>Generation of Monodisperse Aerosols by Aerodynamic Flow Focusing.</td>
<td>HONGXU DUAN, Amir Naqwi, Francisco Romay, Benjamin Liu</td>
<td>MSP Corporation</td>
</tr>
<tr>
<td>8IM.15</td>
<td>Particle Losses with a Large Diameter Nafion Air Sample Dryer.</td>
<td>Alfred Wiedensohler, EUGENE BOHENSKY, Paul Smith, Craig Sunada</td>
<td>Perma Pure LLC</td>
</tr>
<tr>
<td>8IM.16</td>
<td>Cleanable, High-Flow Aerosol Concentrator.</td>
<td>STEVEN SPIELMAN, Nathan Kreisberg, Susanne Hering</td>
<td>Aerosol Dynamics Inc</td>
</tr>
<tr>
<td>8IM.17</td>
<td>A Nanoparticle Nebulizer for Generation of Aerosolized Colloid Particles with Reduced Interference from Non-Volatile Residue.</td>
<td>DEREK OBERREIT, Gary Van Schooneveld, David Blackford</td>
<td>Fluid Measurement Technologies, Inc.</td>
</tr>
<tr>
<td>8IM.18</td>
<td>Measuring Aerosol Scattering and Absorption - Limitations of the Extinction-Minus-Scattering Method.</td>
<td>SUJEETA SINGH, Damon Smith, Marc Fiddler, Solomon Bililign</td>
<td>North Carolina A&T State University</td>
</tr>
<tr>
<td>8IM.19</td>
<td>Development and Evaluation of Real-time Nano-particle Counter.</td>
<td>KANG-HO AHN, Hong-Ku Lee</td>
<td>Hanyang University, R. of Korea</td>
</tr>
</tbody>
</table>
8NM NANOPARTICLES AND MATERIALS SYNTHESIS
PANZACOLA F/G

David Cocker, chair

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8NM.1</td>
<td>3D Label-Free Prostate Specific Antigen Immunosensor Based on Graphene-Gold Nanocomposites.</td>
<td>HEE DONG JANG, Sun Kyung Kim, Hankwon Chang, Korea Institute of Geoscience and Mineral Resources</td>
</tr>
<tr>
<td>8NM.4</td>
<td>Modelling of Fluid-Dynamic Transport of Growing Nanoparticles with a Turbulent-Like Plasma Jet.</td>
<td>MASAYA SHIGETA, Osaka University</td>
</tr>
</tbody>
</table>

8PH LINKING AEROSOLS WITH PUBLIC HEALTH IN A CHANGING WORLD
PANZACOLA F/G

R. Weber and V. Verma, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8PH.1</td>
<td>Vibrational Spectra of Individual Dust Particles Obtained from the International Space Station and New York 9/11 Disaster.</td>
<td>ANTRIKSH LUTHRA, Aruna Ravi, James Coe, The Ohio State University</td>
</tr>
<tr>
<td>8PH.3</td>
<td>Distribution of Ambient Atmospheric Water-soluble Metals in the Southeastern United States and Insights into Their Complexation States.</td>
<td>TING FANG, Vishal Verma, Richard E. Peltier, Hongyu Guo, Laura King, Rodney Weber, Georgia Institute of Technology</td>
</tr>
<tr>
<td>8PH.4</td>
<td>Spatial and Seasonal Variation in the Molecular Composition of the Humic-Like-Substances (HULIS) Fraction of Ambient Aerosols: Clue for the Sources of Aerosol Oxidative Potential.</td>
<td>YING WANG, Vishal Verma, Ting Fang, Rodney Weber, Georgia Institute of Technology</td>
</tr>
</tbody>
</table>

8RA REMOTE AND REGIONAL ATMOSPHERIC AEROSOLS
PANZACOLA F/G

Lynn Russell, chair

Characterization of Arctic Aerosol Particles during the Arctic Ocean Expedition in 2013. GIBAEK KIM, Young Jun Yoon, Hee-joo Cho, Kihong Park, Gwangju Institute of Science and Technology

The Characteristics of Long-range Transboundary Inorganic Secondary Aerosols in Northeast Asia. YOO JUNG KIM, Gregory Carmichael, Jung-Hun Woo, Zhang Qiang, Young Sunwoo, Young-il Ma, University of Iowa

Frost Flower Aerosol Effects on Arctic Winter-time Longwave Cloud Radiative Forcing. Li Xu, LYNN RUSSELL, Richard Somerville, Patricia Quinn, Scripps Institution of Oceanography

Individual Particle Chemistry during the Summer in Remote Northern Michigan. MATTHEW GUNSCH, Nathaniel May, Daniel Gardner, Stephanie Schmit, Andrew Ault, Kerri Pratt, University of Michigan
8SA SOURCE APPORTIONMENT
PANZACOLA F/G

Paul Solomon, chair

<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8SA.1</td>
<td>12:15</td>
<td>Elemental and Individual Particle Analysis of Atmospheric Aerosols from New Delhi, India. HONGRU SHEN, Thomas Peters, Gary Casuccio, Naresh Kumar, Andrew Ault, University of Michigan</td>
</tr>
<tr>
<td>8SA.2</td>
<td>12:15</td>
<td>Investigation of Sources of Particulate Matter through Trace Metal Measurements Near the Oil Sands Field in the Athabasca Region, Alberta. CATHERINE PHILLIPS-SMITH, Cheol-Heon Jeong, Robert Healy, Ewa Dabek-Zlotorzynska, Valbona Celo, Jeff Brook, Greg J. Evans, SOCAAR, University of Toronto</td>
</tr>
<tr>
<td>8SA.3</td>
<td>12:15</td>
<td>Novel Approach for Estimating Light Duty Gasoline and Heavy Duty Diesel Mobile Source Impacts Based on Mobile Source Emissions and Fused Observation-CMAQ Data. XINXIN ZHAI, Mariel Friberg, Heather Holmes, Yongtao Hu, James Mulholland, Armistead Russell, Georgia Institute of Technology</td>
</tr>
<tr>
<td>8SA.4</td>
<td>12:15</td>
<td>Relating Stack Height to Regional Pollutant Exposures. KRISTINA WAGSTROM, Fatema Parvez, University of Connecticut</td>
</tr>
<tr>
<td>8SA.5</td>
<td>12:15</td>
<td>Estimating the Impact of Air Pollution Controls on Ambient Concentrations. LUCAS HENNEMAN, David Lavoue, Heather Holmes, James Mulholland, Armistead Russell, Georgia Institute of Technology</td>
</tr>
<tr>
<td>8SA.6</td>
<td>12:15</td>
<td>Seasonal Variations and Regional Sources of Ultrafine Particulate Matter at a Semi-Rural Site on the Olympic Peninsula. LAUREN WHYBREW, Cassandra Gaston, Felipe Lopez-Hilfiker, Odelle Hadley, Honglian Gao, Fran McNair, Dan Jaffe, Joel A. Thornton, University of Washington, Seattle, WA</td>
</tr>
</tbody>
</table>
8UA URBAN AEROSOLS
PANZACOLA F/G

Tran B. Nguyen and Paul A. Solomon, chairs

8UA.1 12:15 Impact of Land Use on Atmospheric Quasi-Ultrasfine Particles in Houston TX. INKYU HAN, Yuncan Guo, Masoud Afshar, University of Texas School of Public Health

8UA.2 12:15 Contribution of Tailpipe Emissions of Gas Phase Precursors to Secondary Aerosol Formation. BEHDAD YAZDANI BOROUJENI, Chance Spencer, Don Collins, Texas A&M University

8UA.3 12:15 Elucidating Emission Sources and Atmospheric Processes of Aerosols in Fresno, CA: Results from 2013 Winter NASA DISCOVER-AQ Study. CAROLINE PARWORTH, Hwajin Kim, Shan Zhou, Sonya Collier, Xiaolu Zhang, Christopher Cappa, Qi Zhang, University of California, Davis

8UA.4 12:15 Monitoring Stations to Assess Near-Road Air Pollution. NATHAN HILKER, Cheol-Heon Jeong, Jon M Wang, Naomi Zimmerman, Robert Healy, Kelly Sabaliauska, Greg J. Evans, Tony Munoz, Al Melanson, Andrew Warner, Michael Noble, Jerzy Deboz, Yushan Su, Dennis Herod, Celine Audette, Luc White, Daniel Wang, Dave Henderson, SOCAAR, University of Toronto

8UA.5 12:15 Vertical and Horizontal Aerosol Profiling Over Residential Areas. VERONIKA DOCEKALOVA, Jan Hovorka, Filip Kobrzek, Petr Marecek, Charles University in Prague

8UA.6 12:15 Long-term Trends in Criteria Pollutant Concentrations within the South Coast Air Basin of California. SCOTT A. EPSTEIN, Kalam Cheung, Sang-Mi Lee, South Coast Air Quality Management District

<table>
<thead>
<tr>
<th>Platform</th>
<th>Title</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9AC.1</td>
<td>Vapor Wall Loss of Semi-Volatile Organic Compound in Smog Chamber</td>
<td>Penglin Ye, Xiang Ding, Ellis Shipley Robinson, Neil Donahue, Carnegie Mellon University</td>
</tr>
<tr>
<td>9AC.2</td>
<td>Parameterizing Vapor Wall Loss Rate in a Teflon Chamber</td>
<td>Xuan Zhang, Rebecca Schwantes, Hanna Lignell, Matthew Coggon, Richard Flagan, John Seinfeld, Caltech</td>
</tr>
<tr>
<td>9AC.3</td>
<td>Main Parameters Controlling Equilibration Time Scales of Atmospheric Semi-Volatile Aerosols</td>
<td>Andrey Khlystov, Desert Research Institute</td>
</tr>
<tr>
<td>9AC.4</td>
<td>A Critical Evaluation of Proxy Methods used to Estimate the Acidity of Atmospheric Particles</td>
<td>Christopher Hennigan, Jessica Izumi, University of Maryland, Baltimore County</td>
</tr>
<tr>
<td>9AC.5</td>
<td>Probing Aerosol Particle Interfaces with Biphasic Microfluidics</td>
<td>Cari Dutcher, Andrew Metcalf, University of Minnesota, Twin Cities</td>
</tr>
</tbody>
</table>

9BA.1 Effect of Sampling Flow Rates on Virus Collection Efficiencies of a BioSampler vs. an All-Glass Impinger. John Lednicky, Julia Loeb, Kevin Fennelly, Diandra Anwar, Sewon Oh, Chang-Yu Wu, University of Florida
Application of ATP-based Bioluminescence for Bioaerosol Quantification: Effect of Sampling Method. TAEWON HAN, Gediminas Mainelis, Rutgers, The State University of New Jersey

Characterization of Gelatin Filters for Sampling Bacillus Anthracis. KRISTIN BOWER, John Yeager, Paul Dabisch, NBACC

Effect of Bioaerosol Sampling Stress on 16SrRNA/rRNA-gene Ratio of Airborne Bacteria. HUAJUN ZHEN, Valdis Krumins, Donna Fennell, Gediminas Mainelis, Rutgers, The State University of New Jersey

Genomic RNA as a Physical Tracer in Filovirus Aerosol Studies. TAMIA KNIGHT, Michael Schuit, Shanna Ratnesar-Shumate, Paul Dabisch, NBACC

Determining the Absolute Concentration of Proteins Using ES-DMA. MINGDONG LI, Jiaojie Tan, Michael Tarlov, Michael Zachariah, University of Maryland

Bio-nanoparticles as Candidate Reference Materials for Mobility Analysis of Nanoparticles. RIAN YOU, Mingdong Li, Suavajyoti Guha, George Muhlolland, Michael Zachariah, University of Maryland

A New Paradigm for Size Distribution Measurements Relevant to Aerosol Health Studies. AMANDA GRANTZ, Johannes Leppä, Richard Flagan, California Institute of Technology

Concentrated Particle Collection into Liquid for Toxicological Studies. GREGORY LEWIS, Steven Spielman, Arantzazu Eiguren Fernandez, Susanne Hering, Aerosol Dynamics Inc.

A New Instrument for Direct Cellular Exposure to Ambient Aerosols. ARANTZAZU EIGUREN FERNANDEZ, Ning Li, Steven Spielman, Susanne Hering, Aerosol Dynamics Inc.
9NP ADVANCES IN THE PHYSICS AND CHEMISTRY OF NEW PARTICLE FORMATION AND GROWTH

PANZACOLA H 4

Jeff Pierce and Taina Yli-Juuti, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9NP.1</td>
<td>1:45</td>
<td>Atmospheric Nanoparticle Growth: From Nano-to Global Scale.</td>
<td>Ilona Riipinen, Jan Julin, Taina Yli-Juuti, Silja Häkkinen, Lars Ahlm, Juan-Camillo Acosta Navarro, Ivica Crljenica, Katrianne Lehtipalo, Stephen D’Andrea, Jeffrey Pierce, Stockholm University</td>
</tr>
<tr>
<td>9NP.3</td>
<td>2:15</td>
<td>The Contribution of Sub-Grid, Plume-Scale Nucleation to Global CCN Concentrations.</td>
<td>Robin Stevens, Jeffrey Pierce, Dalhousie University</td>
</tr>
<tr>
<td>9NP.4</td>
<td>2:30</td>
<td>Difference in Particle Formation at a Mountain-top Location in Colorado during the Spring and Summer: Modeling and Comparison with Observations.</td>
<td>Fangqun Yu, Anna Gannet Hallar, University at Albany</td>
</tr>
<tr>
<td>9NP.5</td>
<td>2:45</td>
<td>Simulation of Nucleation in the Global Atmosphere Based on CERN CLOUD Chamber Measurements.</td>
<td>Ken Carslaw, Eimear Dunne, Andreas Kuerten, Francesco Riccobono, Kamalika Sengupta, Catherine Scott, Joao Almeida, University of Leeds</td>
</tr>
</tbody>
</table>

9PH LINKING AEROSOLS WITH PUBLIC HEALTH IN A CHANGING WORLD

SEBASTIAN I 2

V. Verma and Jason Surratt, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9PH.1</td>
<td>1:45</td>
<td>The Effects of Atmospheric Oxidation on the Levels of Aerosol Reactive Oxygen Species.</td>
<td>Jonathan Abbatt, University of Toronto</td>
</tr>
</tbody>
</table>
9PH.4 2:30
VISHAL VERMA, Ting Fang, Lu Xu, Nga Lee Ng, Rodney Weber, Georgia Institute of Technology

9PH.5 2:45
MANABU SHIRAIWA, Andrea Arangio, Kathrin Selzle, Christopher Kampf, Ulrich Poeschl, MPIC

9UA URBAN AEROSOLS
SEBASTIAN I 1
Kristina Wagstrom and Ashish Singh, chairs

9UA.1 1:45
Impacts of Complete Street Retrofit on On-road Fine and Ultrafine Particles Concentrations: A Case Study in Santa Monica, California.
Shi Shu, Nu Yu, YIFANG ZHU, UCLA

9UA.2 2:00
Airborne Metal Concentrations during and After Pollution Restrictions in Beijing.
NITIKA DEWAN, Brian Majestic, YuanXun Zhang, University of Denver

9UA.3 2:15
Predicting the Effectiveness of Vegetation Barriers on Near-Road PM.
JONATHAN STEFFENS, K. Max Zhang, Cornell University

9UA.4 2:30
Contamination of Urban Stormwater Runoff in Syracuse, NY by Previously Deposited Atmospheric Aerosol.
CLIFF DAVIDSON, Emily Procopio, Jeremy Tamargo, Syracuse University

9UA.5 2:45
Spatial Distribution of and Correlation between Noise And Particulate Matter near Two Freeways in Los Angeles, California.
SHI SHU, Yang Pu, Yifang Zhu, UCLA
Thursday 3:00 PM - 3:30 PM
Coffee Break

Thursday 3:30 PM - 5:00 PM
Session 10: Platform

10BA BIOAEROSOLS AND HOMELAND SECURITY
SEBASTIAN I 3
Alex Huffman and Anne Pering, chairs

10BA.1 3:30 Contribution of Bioaerosols to PM10 and PM2.5 in the Southeastern United States. TRACI LERSCH, Gary Casuccio, Stephanie Shaw, Annette Rohr, RJ Lee Group, Inc.

10BA.2 3:45 On the Use of Organic Molecular Markers for the Apportionment of Aerosols - Insight from PMF Analysis at 3 French Urban Sites. ANTOINE WAKED, Olivier Favez, Jean-Luc Jaffrezo, Jean-Luc Besombes, Benjamin Golly, Laurent Alleman, Tiphaine Delaunay, Géraldine Guillaud, Pierre-Yves Guernion, Eva Léoz-Garziandia, Univ. Grenoble Alpes, CNRS, LGGE, F-38000 Grenoble, France

10BA.3 4:00 Species Variations in Airborne Bacterial Communities in Asian Dust Downwind Area during a Dust Event. TERUYA MAKI, Fumihisa Kobayashi, Kazunori Hara, Chen Bin, Yasunobu Iwasaka, Kanazawa University

10BA.4 4:15 Hunting Sources of Biogenic Ice Nucleating Particles in Soils, Sea Spray and Air. PAUL DEMOTT, Thomas Hill, Yukata Tobo, Christina S. McCluskey, Ezra Levin, Kaitlyn Suski, Douglas Collins, Gavin Cornwell, Christopher Lee, Camille Sultana, Jessica Axson, Francesca Malfatti, Kimberly Prather, Sonia Kreidenweis, Tinkara Tinta, Colorado State University

10BA.5 4:30 Hydrophilicity and CCN Activity of Atmospheric Bacteria Isolates and Implications for Cloud Formation. NATASHA DELEON-RODRIGUEZ, Aikaterini Bougiatioti, Nimmy Mathew, Arnaldo Negron-Marty, Michael Bergin, Konstantinos Konstantinidis, Athanasios Nenes, Georgia Institute of Technology
Emission Rates of Biological Aerosol Particles in a Montane Pine Forest. STEPHAN NORD-MANN, Hang Su, J. Alex Huffman, Ulrich Poeschl, Yafang Cheng, MPIC

Impact of the Economic Crisis on Wintertime Air Quality in Thessaloniki, Greece. ARIAN SAF-FARI, Nancy Daher, Constantini Samara, Dimitra Voutsa, Athanasios Kouras, Evangelia Manoli, Olga Karagkiozidou, Christos Vlachokostas, Nicolas Moussiopoulos, Martin Shafer, James Schauer, Constantinos Sioutas, University of Southern California

2013 Southeast Asian Smoke Haze: Specification of Size-resolved Aerosols and Associated Health Impacts. RAJASEKHAR BALASUBRAMANIAN, Raghu Betha, Sailesh Behera, National University of Singapore

Characterizing Cookstove Emissions in South Asia. RYAN THOMPSON, Cheryl Weyant, Tami Bond, University of Illinois at Urbana-Champaign

Chemical and Physical Characterization of Particulate Emissions from Different Phases of an Improved Cookstove Operation. Raul Martinez, SAMEER PATEL, Anna Leavey, Dhruv Mitroo, Ruijie Yu, Brent Williams, Pratim Biswas, Washington University in St. Louis

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CA.2</td>
<td>Determining Aerosol Volatility Parameters using a ‘Dual Thermodenuder’ System: Application to Laboratory-generated Organic Aerosol.</td>
<td>PROVAT SAHA, Andrey Khlystov, Andrew Grieshop, North Carolina State University</td>
</tr>
<tr>
<td>10CA.3</td>
<td>Quantitative Evidence of Ultraviolet Organic Peroxy Radical Photochemistry in a Photochemical Flow Cell.</td>
<td>W. SEAN MCGIVERN, Joseph Klems, National Institute of Standards and Technology</td>
</tr>
<tr>
<td>10CA.4</td>
<td>Application of Positive Matrix Factor Analysis in Heterogeneous Kinetics Studies: OH Initiated Oxidation of Organophosphate Flame Retardants in PM.</td>
<td>JOHN LIGGIO, Yongchun Liu, Shao-Meng Li, Environment Canada</td>
</tr>
<tr>
<td>10CA.5</td>
<td>Relative Importance of Black vs. Brown Carbon Absorption in Biomass Burning Plumes.</td>
<td>SHANE MURPHY, Rudra Pokhrel, Eric Beamesderfer, Daniel Lack, Nick Wagner, Justin Langridge, Daniel Murphy, University of Wyoming</td>
</tr>
</tbody>
</table>
Comparison of Near-Roadway PAH Measurements via Multiple Methods. STEVEN BROWN, David Olson, Taehyoung Lee, Paul Roberts, Gary Norris, Jeffrey Collett, Sonoma Technology, Inc

Temperature Effects on Secondary Organic Aerosol Formation from Gasoline Vehicle Exhaust. MARY KACARAB, David R. Cocker III, University of California, Riverside

On the Black Carbon Content of Soot from Flames and Engine Exhaust. MATTI MARICQ, Ford Motor Company

Detailed Characterization of Particulate Matter (PM) Emitted by Lean-Burn Gasoline Direct Injection (GDI) Engine. JACQUELINE WILSON, Alla Zelenyuk, Mark Stewart, George Muntean, John Storey, Vitaly Prikhodko, Samuel Lewis, Mary Eibl, Pacific Northwest National Laboratory

Morphology of Particles Emitted during Cold Start and Hot Start Operating Conditions of a GDI Engine Fuelled on Gasoline and Ethanol Blends. RAMIN DASTANPOUR, Steven Rogak, Phillip Mireault, Manuel Ramos, James S. Wallace, University of British Columbia
10C0.6

Effect of Drive Cycle and Gasoline Particulate Filter on Size and Morphology of Soot Particles Produced by a Gasoline Direct Injection Vehicle. MEGHDAD SAFFARIPOUR, Fengshan Liu, Kevin Thomson, Tak Chan, Joseph Kubsh, Brezny Rasto, *National Research Council Canada*

10IM INSTRUMENTATION AND METHODS

PANZACOLA H 1-3

Jian Wang and Nathan Kreisberg, chairs

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30</td>
<td>10IM.1</td>
<td>A Novel Glass Chamber for Studies of Aerosol Dynamics and Interactions.</td>
<td>YEVGEN NAZARENKO, Parisa A. Ariya, McGill University</td>
</tr>
<tr>
<td>4:00</td>
<td>10IM.3</td>
<td>Real-Time Separation and Detailed Characterization of Aspherical Nanoparticles.</td>
<td>ALLA ZELENYUK, David Bell, Jacqueline Wilson, Dan Imre, Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>4:15</td>
<td>10IM.4</td>
<td>Development of Triggering-LIBS for Elemental Analysis of Submicrometer Single Particle in Real Time.</td>
<td>HEESUNG LEE, Gibaek Kim, Jihyun Kwak, Kihong Park, GIST</td>
</tr>
<tr>
<td>4:45</td>
<td>10IM.6</td>
<td>PAHs Emissions in Diesel and Biodiesel Using LVI-PTV-GC-MS.</td>
<td>CAROLINA SOUZA, Sergio Correa, Rio de Janeiro State University</td>
</tr>
</tbody>
</table>
10SA SOURCE APPORTIONMENT

SEBASTIAN I 1

Nga Lee (Sally) Ng and Shunsuke Nakao, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>10SA.1</td>
<td>Indoor PM2.5 in Santiago, Chile, Spring 2012: Source Apportionment and Outdoor Contributions.</td>
<td>Lupita Montoya, Francisco Barraza, Hector Jorquera, Gonzalo Valdivia, University of Colorado Boulder</td>
</tr>
<tr>
<td>10SA.2</td>
<td>Characterization of Aral Sea Particulate Matter in Kyrgyzstan.</td>
<td>Nitika Dewan, Brian Majestic, Martin Shafer, James Schauer, Paul A. Solomon, University of Denver</td>
</tr>
<tr>
<td>10SA.3</td>
<td>Use of Stack Samples to Enhance Source Apportionment of Particulate Matter Mass Collected in Ambient Air Samples.</td>
<td>Suresh Raja, Punith Nallathamby, ENERCON Services, Inc.</td>
</tr>
<tr>
<td>10SA.4</td>
<td>Receptor Modeling of Near-Real-Time, Ambient PM2.5 and Its Constituents Collected at an Urban-Industrial Site in Toronto, Ontario.</td>
<td>Uwayemi Sofowote, Ankit Rastogi, Jerzy Debosz, Philip Hopke, AQARU, EMRB, Ontario Ministry of the Environment</td>
</tr>
<tr>
<td>10SA.6</td>
<td>Long-term Source Apportionment of Ambient Fine Particulate Matter (PM2.5) in the Los Angeles Basin: A Focus on Emissions Reduction from Vehicular Sources.</td>
<td>Sina Hasheminassab, Nancy Daher, Bart Ostro, Constantinos Sioutas, University of Southern California</td>
</tr>
</tbody>
</table>
Friday 8:00 AM - 9:15 AM
Plenary IV

8:00 Climate, Biofuel Emissions, and the Quest for Relevance Tami Bond, University of Illinois at Urbana-Champaign

Moderator V. Faye McNeill, Columbia University

9:00 Student Poster Competition Award Presentation Britt Holmén, University of Vermont

9:10 Concluding Remarks and Preview for 2015 Athanasios Nenes and Andrea Ferro, 2014 and 2015 Conference Chairs, Georgia Institute of Technology and Clarkson University

Friday 9:15 AM - 9:45 AM
Coffee Break

Friday 9:45 AM - 11:00 AM
Session 11: Platform

11AC AEROSOL CHEMISTRY
PANZACOLA H 4

Adam Bateman and Nga Lee (Sally) Ng, chairs

11AC.1 9:45 The Effect of Particle Morphology on its Evaporation Kinetics and Rates of Heterogeneous Reactions. ALLA ZELENYUK, Jacqueline Wilson, David Bell, Dan Imre, Pacific Northwest National Laboratory

11AC.2 10:00 Gas-Particle Partitioning of Organic Aerosols: Defining the Influence of Surface Interactions on Their Volatility. RICHARD E. COCHRAN, Alena Kubatova, Evgenii I. Kozliak, University of North Dakota

11AC.3 10:15 Effect of Precursor Molecular Structure on the Volatility, Viscosity and Oligomer Content of SOA Particles Formed by Ozonolysis of Cycloalkenes. JACQUELINE WILSON, Alla Zelenyuk, Dan Imre, ManishKumar Shrivastava, Pacific Northwest National Laboratory
| 11AC.4 | APM Measured Shape Factor Change of α-pinene SOM and Its Dependence on Relative Humidity. YUE ZHANG, Marianna Santos Sanchez, Yan Wang, Zhaoheng Gong, Adam Bateman, Franz Geiger, Scot Martin, Harvard University |
| 11AC.5 | Ultraviolet and Visible Complex Refractive Indices of Brown Carbon Formed via Photo-oxidation of Aromatic Toluene and m-Xylene. PENGFEI LIU, Scot Martin, Harvard University |

11BA BIOAEROSOLS AND HOMELAND SECURITY PANZACOLA H 1-3

Dave Alburty and Joanne Emerson, chairs

11BA.1	Study of the Aerosolization Mechanisms of Bacteria in Single Particle Using Fluorescence Spectroscopy. NICOLAS GROULX, Nathalie Turgeon, Caroline Duchaine, *Université Laval, Canada*
11BA.2	Bacterial and Fungal Ecology in Indoor and Outdoor Air. JOANNE B. EMERSON, Patricia Keady, Anne Perring, Jonathan Awerbuch, Joshua P. Schwarz, David Fahey, Shelly Miller, Noah Fierer, *University of Colorado Boulder*
11BA.3	Proteomic Analysis of Sphingomonas aerolata Incubated in the Airborne State. Valdis Krumins, Maksim Abadjev, Sjef Boeren, Tomas Kruse, Peter Schaap, Hauke Smidt, Gediminas Mainelis, Lee Kerkhof, DONNA FENNELL, Rutgers, *The State University of New Jersey*
11BA.4	Characterization of Fungal Fragments. JACOB MENSAH-ATTIPOE, Sampo Saari, Jorma Keskinen, Anniina Salmela, Anna-Maria Veijalainen, Pertti Pasanen, Tiina Reponen, *University of Eastern Finland*
11BA.5	Development of a Laboratory Surrogate for Swine Bioaerosol. CHRISTINE LOZA, John Horns, Brian Mader, Scott Dee, *3M*
11CO COMBUSTION

SEBASTIAN I 4

Matti Maricq and Hossein Ghiassi, chairs

11CO.1	9:45	Size Distributions and Volatility of Vehicle PM Emissions Measured in a Traffic Tunnel.	ALBERT A. PRESTO, Xiang Li, Timothy Dallmann, Carnegie Mellon University
11CO.2	10:00	Pyrolysis Smoke Generated Under Low-Gravity Conditions.	GEORGE MULHOLLAND, Marit Meyer, David Urban, Gary Ruff, Zeng-guang Yuan, Victoria Bryg, Thomas Cleary, Jiann Yang, NASA Glenn Research Center
11CO.4	10:30	Light-Duty Diesel Biodiesel Particle Number Emissions Relative to Blend Ratio and Engine Conditions.	TYLER FERALIO, Britt Holmén, University of Vermont
11IM INSTRUMENTATION AND METHODS
SEBASTIAN I 1
Matthew Berg and Steven Spielman, chairs

11IM.1 A New Method to Measure the Extinction Cross Section Using Digital Holography. MATTHEW BERG, Nava Subedi, Mississippi State University
9:45

10:00

11IM.3 Multi-Wavelength Measurements of Soot Optical Properties Using CAPS PMssa and CRD-PAS Instruments. Sara Forestieri, Andrew Lambe, Molly Cummings, James Brogan, Christopher Cappa, Paul Davidovits, ANDREW FREEDMAN, Timothy Onasch, Aerodyne Research, Inc.
10:15

10:30

11IM.5 Surface Tension Measurement of Secondary Organic Aerosols Using Atomic Force Microscopy. ANDREW HRITZ, Dabrina Dutcher, Timothy Raymond, Bucknell University
10:45

11RA REMOTE AND REGIONAL ATMOSPHERIC AEROSOLS
SEBASTIAN I 3
Satoshi Takahama and John Liggio, chairs

11RA.1 Atmospheric Monitoring in the Western Mediterranean in Summer 2013: Overview of Physico-chemical Properties and Variability. JORGE PEY, José Carlos Cerro, Stig Hellebust, H. Langley DeWitt, Brice Temime-Roussel, Miriam Elser, N. Pérez, Alexandre Sylvestre, Dalia Salameh, Grisa Mocnik, Andre Prévôt, Yanlin Zhang, Soenke Szidat, Nicolas Marchand, Aix-Marseille Université, CNRS, LCE FRE 3416
9:45
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11RA.2</td>
<td>A Study on Primary Marine Organic Aerosols and Biological Materials in Seawater.</td>
<td>Ji Yeon Park, Min Soo Kang, Wajih Ur Rehman, Dohyung Kim, Kihong Park, Gwangju Institute of Science and Technology</td>
</tr>
<tr>
<td>11RA.3</td>
<td>Using Ocean Biogeochemistry and Surface Activity to Improve Understanding of Regional Patterns in Sea Spray Chemistry.</td>
<td>Susannah Burrows, Oluwaseun Ogunro, Amanda Frossard, Lynn Russell, Phil Rasch, Scott Elliott, Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>11RA.5</td>
<td>Chemical Characterization of PM$_{2.5}$ for the Year 2013 for 5 Rural Background Sites in France.</td>
<td>Antoine Waked, Jean-Luc Jaffrezo, Jean-Luc Besombes, Emmanuelle Drab-Sommesous, Eve Chretien, Pierre-Yves Robic, Sebastien Conil, Geraldine Guillaud, Jerome Rangognio, Quentin Poinsonign, Univ. Grenoble Alpes, CNRS, LGGE, F-38000 Grenoble, France</td>
</tr>
</tbody>
</table>

11SA SOURCE APPORTIONMENT

Amy Sullivan and Lindsay Hatch, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11SA.1</td>
<td>Single Particle Chemical Profiles for Improved Source Identification and Quantification of Atmospheric Aerosol Source Contributions in Combination with Aerosol Mass Spectrometry Data.</td>
<td>Stig Hellobust, Jorge Pey, H. Langley, DeWitt, Brice Temime-Roussel, Miriam Elser, Jose Carlos Cerro, N. Perez, Andre Prevot, Nicolas Marchand, Aix Marseille Universite, Laboratoire Chimie Environnement</td>
</tr>
<tr>
<td>11SA.2</td>
<td>Determination of Local and Remote Sources Areas of PM$_{10}$ In Northern France.</td>
<td>Aude Pascalou, Esperanza Perdrix, Laurent Alleman, Stephane Sauvage, Tiphaine Delaunay, Mines Douai</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>11SA.3</td>
<td>Influence of Industrial Activities on Concentrations and Chemical Composition of Ambient Aerosol Particles.</td>
<td>Alexandre Sylvestre, Aurelie Mizzi, Sebastien Mathiot, Boualem Mesbah, Julien Don, Gautier Revenko, Philippe Chamaret, Jean-Luc Jaffrezo, Henri Wortham, Nicolas Marchand, Aix-Marseille Université, CNRS, LCE FRE 3416</td>
</tr>
<tr>
<td>11SA.4</td>
<td>Source Apportionment of PM10 in a Northwestern Europe Regional Urban Background Site (Lens, France): Interest of the Use of Organic Tracers in a Positive Matrix Factorization Methodology.</td>
<td>Antoine Wakéd, Benjamin Golly, Olivier Favez, Laurent Alleman, Christine Piot, Tiphaine Delaunay, Emmanuel Verlinden, Jean-Luc Besombes, Jean-Luc Jaffrezo, Eva Léoz-Garzia, Univ. Grenoble Alpes, CNRS, LGGE, F-38000 Grenoble, France</td>
</tr>
<tr>
<td>11SA.5</td>
<td>Comparison of the Sources of Organic Aerosol (OA) Using Aerosol Mass Spectrometry at Two Mediterranean Islands: Corsica and Mallorca.</td>
<td>H. Langley DeWitt, Jorge Pey, Stig Hellebust, Brice Temime-Roussel, Aurelie Mizzi, Dalia Salameh, Alexandre Sylvestre, Miriam Elser, N. Pérez, José Carlos Cerro, Jean-Luc Jaffrezo, Grisa Mocnik, Andre Prévôt, Nicolas Marchand, Aix-Marseille Université, CNRS, LCE FRE 3416</td>
</tr>
</tbody>
</table>

Friday 11:15 AM - 12:30 PM
Session 12: Platform

12BA BIOAEROSOLS AND HOMELAND SECURITY
PANZACOLA H 1-3

Matthias Frank and Paul Dabisch, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12BA.2</td>
<td>An Aerosol Dry Deposition System for Quantifying the Retention of Bacillus Spores on HVAC Filters.</td>
<td>ANNE MARIE ERLER, Staci Kane, Matthias Frank, George R. Farquar, Lewis Wogan, Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>12BA.3</td>
<td>Resuspension of Spores from Urban Surfaces.</td>
<td>JEROME GILBERRY, Jonathan Thornburg, Laurie Brikey, Alfred Eisner, Russell Wiener, Marshall Gray, RTI International</td>
</tr>
<tr>
<td>12BA.4</td>
<td>Improved Threat Characterization Using Next Generation Sequencing.</td>
<td>ZAHRA CHAUDHRY, Peter Thiehen, Verratti Kathleen, Christopher Bradburne, JHU APL</td>
</tr>
<tr>
<td>12BA.5</td>
<td>DHS Biological Hazard Assessment Research: Characterizing Agents to Inform Risk: A Focus on Aerosols.</td>
<td>MATTHEW MOE, Lloyd Hough, Scott White, Department of Homeland Security</td>
</tr>
</tbody>
</table>

12CA Carbonaceous Aerosols in the Atmosphere

Hans Moosmuller and Andy Freedman, chairs

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12CA.1</td>
<td>Experimental Studies of Particle Bounce: Comparison of Secondary Organic Material (SOM) from Harvard Environmental Chamber and Field Studies in Amazonia.</td>
<td>ADAM BATEMAN, Pengfei Liu, Yue Zhang, Zhaoheng Gong, Bruno Bianchi Sato, Glauber Cirino, Joel Brito, Rodrigo A. F. Souza, Antonio O. Manzi, Paulo Artaxo, Scot Martin, Harvard University</td>
<td></td>
</tr>
<tr>
<td>12CA.2</td>
<td>Interpretation of Regression Parameters for Quantification of Organic Aerosol Mass Components with Infrared Transmission Spectra.</td>
<td>SATOSHI TAKAHAMA, Ann Dillner, Ecole Polytechnique Federale de Lausanne, Switzerland</td>
<td></td>
</tr>
<tr>
<td>12CA.3</td>
<td>Atmospheric Aging of Fullerene Nanoparticles.</td>
<td>DHRUV MITROO, Peter Colletti, Michael Walker, Jiewei Wu, John Fortner, Brent Williams, Washington University in St. Louis</td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors / Affiliations</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12CA.4</td>
<td>Phase Separation Effects on the Optical Properties of Mixed Brown Carbon/Ammonium Sulfate Aerosol.</td>
<td>JAMES RADNEY, Christopher Zangmeister, National Institute of Standards and Technology</td>
<td></td>
</tr>
<tr>
<td>12CA.5</td>
<td>Soot Aggregate Restructuring due to Coatings of Secondary Organic Aerosol from Aromatic Precursors.</td>
<td>ELIJAH G. SCHNITZLER, Jason S. Olfert, Wolfgang Jaeger, University of Alberta</td>
<td></td>
</tr>
<tr>
<td>12CO.2</td>
<td>An Investigation of Soot Oxidation-Induced Fragmentation in a Two-Stage Burner.</td>
<td>HOSSEIN GHIASSI, Isabel C. Jaramillo, JoAnn S. Lighty, University of Utah</td>
<td></td>
</tr>
<tr>
<td>12CO.3</td>
<td>Aerosol Measurements in Solid Rocket Propellant Fire Plumes.</td>
<td>FRED GELBARD, Daniel Lucero, Brandon Servantes, Andrew Lennon, Karen Siegrist, Mike Thomas, Adam Willitsford, Sandia National Laboratories</td>
<td></td>
</tr>
<tr>
<td>12CO.4</td>
<td>Measurements of High Spatial Resolution of Ultrafine and Coarse Aerosol Particles in Industrial Plume.</td>
<td>JAN HOVORKA, Veronika Docekalova, Miroslav Klán, Filip Kobrzek, Petr Marecek, Charles University in Prague</td>
<td></td>
</tr>
<tr>
<td>12CO.5</td>
<td>Filtration of Ultrafine Dust Emitted by Biomass Combustion with a Baghouse Filter Using Precoat Materials.</td>
<td>SASCHA SCHILLER, Hans-Joachim Schmid, University of Paderborn, Germany</td>
<td></td>
</tr>
</tbody>
</table>
12IM INSTRUMENTATION AND METHODS
SEBASTIAN I 1
Jim Farnsworth and Leah Williams, chairs

12IM.1 11:15 Design, Testing, and Validation of a Calibration Chamber for Particles. Wendy Merkley, KORI MOORE, Randy Martin, Michael Wojcik, Utah State University

12IM.2 11:30 A Novel Instrument for Measuring Broadband Optical Properties of PM Deposited on Filters. KEITH BEIN, Charles McDade, UC Davis

12IM.3 11:45 Measuring PM and Related Air Pollutants Using Low-Cost Sensors. KAROLINE JOHNSON, Michael Bergin, Armieartd Russell, Gayle Hagler, Georgia Institute of Technology

12IM.4 12:00 Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station. WAN JIAO, Gayle Hagler, Ron Williams, Bobby Sharpe, Joann Rice, Lewis Weinstock, ORD-US EPA, RTP, NC

12IM.5 12:15 Measurement System for the Simultaneous and Continuous Determination of PM-fractions and Ultrafine Particles. JUERGEN SPIELVOGEL, Maximilian Weiss, Palas GmbH

12RA REMOTE AND REGIONAL ATMOSPHERIC AEROSOLS
SEBASTIAN I 3
Richard Leaitch and Qi Ying, chairs

12RA.2 11:30 Response of Total NH₃ to Reductions in Atmospheric Levels of SO₂ and NOₓ: An Analysis of Data from SEARCH. RICK SAYLOR, LaToya Myles, Eric Edgerton, NOAA Air Resources Laboratory
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12RA.3</td>
<td>Trends in Concentrations of Atmospheric Gaseous and Particulate Species at Look Rock as Related to Primary Emissions Reductions.</td>
<td>11:45</td>
<td>Stephanie Shaw, Roger Tanner, Solomon Bairai, Stephen Mueller, Tennessee Valley Authority</td>
</tr>
<tr>
<td>12RA.4</td>
<td>The Role of Nucleation in Controlling Aerosol Size Distributions: Analysis of 10 Months of Recent Aerosol Size Distributions at a Non-Forested Agricultural Location.</td>
<td>12:00</td>
<td>Robert Bullard, Ashish Singh, Charles Stanier, University of Iowa</td>
</tr>
<tr>
<td>12SA.1</td>
<td>Quantifying Variability in Molecular Markers Used for Vehicle Source Profiles: Effects on PM Source Apportionment Results.</td>
<td>11:15</td>
<td>Albert A. Presto, Andrew Hix, Christopher Hennigan, Allen Robinson, Carnegie Mellon University</td>
</tr>
<tr>
<td>12SA.3</td>
<td>Performance Evaluation of Three Co-Located Ultrafine Particle Monitors Near the 710 in California.</td>
<td>11:45</td>
<td>Ahmed Mehadi, Donald Hammond, Jeff Wright, Andrea Polidori, Timothy Morphy, Robert Anderson, CARB Monitoring and Laboratory Division</td>
</tr>
<tr>
<td>Session</td>
<td>Presentation Title</td>
<td>Speaker(s)</td>
<td>Institution(s)</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12SA.4</td>
<td>Selenium in Ambient Fine Particulate Matter: Measurement and Trend Analysis.</td>
<td>Li DU, Jay Turner</td>
<td>Washington University in St. Louis</td>
</tr>
<tr>
<td>12SA.5</td>
<td>Temporal and Regional Analysis of Spatially-Resolved PM2.5 Source Apportionment Results over Continental US.</td>
<td>CESUNICA IVEY, Heather Holmes, Yongtao Hu, James Mulholland, Armistead Russell</td>
<td>Georgia Institute of Technology</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

Bold entry indicates presenting author.

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aalto, Juho</td>
<td>5AC.8</td>
</tr>
<tr>
<td>Abadjev, Maksim</td>
<td>11BA.3</td>
</tr>
<tr>
<td>Abbatt, Jonathan</td>
<td>1IA.5, 9PH.1, 11RA.4</td>
</tr>
<tr>
<td>Abe, Karina</td>
<td>1HA.2</td>
</tr>
<tr>
<td>Aboff, Mark</td>
<td>3CC.1</td>
</tr>
<tr>
<td>Abokifa, Ahmed Amin</td>
<td>2BB.6</td>
</tr>
<tr>
<td>Abu-Rizaiza, Omar S</td>
<td>3UA.4</td>
</tr>
<tr>
<td>ACCESS Science Team</td>
<td>8CO.3</td>
</tr>
<tr>
<td>Acosta Navarro, Juan-Camillo</td>
<td>3CC.6, 9NP.1</td>
</tr>
<tr>
<td>Adachi, Kouji</td>
<td>2BB.4</td>
</tr>
<tr>
<td>Adams, Peter</td>
<td>12RA.1</td>
</tr>
<tr>
<td>Adesina, A. Joseph</td>
<td>1CC.4</td>
</tr>
<tr>
<td>Adhikari, Atin</td>
<td>12BA.1</td>
</tr>
<tr>
<td>Afshar, Masoud</td>
<td>8UA.1</td>
</tr>
<tr>
<td>Afshar-Mohajer, Nima</td>
<td>4HA.3, 5CH.6</td>
</tr>
<tr>
<td>Ahern, Adam</td>
<td>6BB.3, 8BB.3, 8CA.12</td>
</tr>
<tr>
<td>Ahlm, Lars</td>
<td>9NP.1</td>
</tr>
<tr>
<td>Ahmadi, Goodarz</td>
<td>2AP.6</td>
</tr>
<tr>
<td>Ahn, Kang-Ho</td>
<td>2IM.2, 2IM.3, 8IM.19</td>
</tr>
<tr>
<td>Aiken, Allison</td>
<td>6AC.4, 6BB.2</td>
</tr>
<tr>
<td>Aiona, Paige</td>
<td>3AC.1</td>
</tr>
<tr>
<td>Aiub, Claudia</td>
<td>5PH.8</td>
</tr>
<tr>
<td>Akagi, Sheryl K.</td>
<td>7BB.4, 7BB.5</td>
</tr>
<tr>
<td>Akoshile, Clement</td>
<td>6PH.1</td>
</tr>
<tr>
<td>Alexander, Lizabeth</td>
<td>2AC.6, 5AQ.1</td>
</tr>
<tr>
<td>Alfoldy, Bálint</td>
<td>1HA.1</td>
</tr>
<tr>
<td>Allan, James</td>
<td>6AC.4, 7BB.3</td>
</tr>
<tr>
<td>Alleman, Laurent</td>
<td>1HA.7, 10BA.2, 11SA.2, 11SA.4</td>
</tr>
<tr>
<td>Allison, Thomas C.</td>
<td>8AC.11</td>
</tr>
<tr>
<td>Allman, Steve</td>
<td>4IM.4</td>
</tr>
<tr>
<td>Almeida, Joao</td>
<td>9NP.5</td>
</tr>
<tr>
<td>Alonso-Blanco, Elisabeth</td>
<td>2NP.5</td>
</tr>
</tbody>
</table>
Alvarado, Matthew – 7BB.4
Amaya, Andrew – 1AP.6
Amirav, Aviv – 2AC.1
Amodeo, Tanguy – 8BA.14
Amouei Torkmahalleh, Mehdi – 2IA.4, 4AC.7
Anastasio, Cort – 1AC.2, 2AC.14
Anderson, Bruce – 2AQ.1, 2CC.3, 4AQ.2, 8AQ.3, 8AQ.4, 8CO.3
Anderson, Kimberly – 6IM.1
Anderson, Robert – 12SA.3
Andreae, Meinrat O – 8BA.16
Andrie, Michael – 6EP.5
Angevine, Wayne – 5AQ.2
Annonio, Jessica – 2HA.2
Anthony, T. Renee – 2CH.8, 8IM.11
Anwar, Diandra – 9BA.1
Apte, Joshua – 6PH.5
Arangio, Andrea – 9PH.5
Arantes, Manoela G. – 1HA.3
Arashiro, Maiko – 5PH.4, 9PH.3
Arena, Vincent – 4HA.4
Arriya, Parisa A. – 10IM.1
Arnold, Ian – 10CA.1
Arquero, Kristine – 7NP.6
Artaxo, Paulo – 2AC.6, 5AQ.1, 6PH.1, 8BA.16, 12CA.1
Arteaga-Salas, Manuel Jose – 1HA.5
Artinano, Begona – 2BB.5, 2NP.5
Asa-Awuku, Akua – 3CC.3, 3CC.5, 7BB.7, 8EP.2, 10CO.3
Aschauer, Isabella – 7CA.7
Asgharian, Bahman – 2HA.1
Attwood, Alexis – 7AQ.1, 7AQ.7
Atwood, Samuel – 3NP.6
Audette, Celine – 8UA.4
Ault, Andrew – 2AQ.4, 8RA.5, 8SA.1
Avenido, Aaron – 2IM.13, 5IM.2
Avens, Larry – 4IM.4
Avzianova, Elena – 8AC.7
Awerbuch, Jonathan – 11BA.2
Axson, Jessica – 10BA.4
Ayala, Alberto – 1UA.1, 10CO.3
Ayres, Benjamin – 4AQ.7
Azgin, Cansu – 2IA.4
Azimi, Parham – 6PH.6
Baalbaki, Rima – 2HA.10, 2UA.3
Baasandorj, Munkhbayar – 4AQ.3, 5AQ.7, 7CA.6
Baasiri, Mohammad – 2HA.9
Baek, Bok – 5BB.6
Bahreini, Roya – 1UA.1
Bairai, Solomon – 5AQ.3, 12RA.3
Bainsnee, Dominique – 7BA.3, 8BA.13, 8BA.14, 8BA.15
Baker, Barry – 8AQ.1
Baker, Zach – 8BA.17
Balasubramanian, Rajasekhar – 2UA.9, 10BB.2
Balaxi, Maria – 10IM.5
Baldwin, Nichole – 5PH.7
Balhas, Zainab – 2HA.10
Baltensperger, Urs – 5AC.7
Bang, John – 2PH.4
Banzaert, Amy – 10BB.5
Barbosa, Cybelli G. G. – 1HA.3
Barnes, Elizabeth – 3NP.6
Barone, Teresa – 4HA.1
Barraza, Francisco – 1IA.7, 2IA.3, 10SA.1
Barsanti, Kelley C. – 8AQ.2, 8BB.3
Bateman, Adam – 11AC.4, 12CA.1
Bates, Kelvin – 1AC.1, 2AC.4
Bates, Timothy – 6IM.2
Baumann, Karsten – 2AQ.5, 2AQ.6, 5AQ.1, 5AQ.8, 6AQ.4, 7AQ.1, 7AQ.6, 7NP.3
Baumgardner, Darrel – 7BA.4, 8BA.19
Baumier, Raphaëlle – 8BA.13, 8BA.14
Baylon, Pao – 7BB.1
Beamesderfer, Eric – 10CA.5
Bean, Jeffrey – 5AC.3
Beardsley, Doug – 3AE.4
Beardsley, Ross – 4AC.2
Becerril, Marta – 2BB.5
Behera, Sailesh – 10BB.2
Bein, Keith – 12IM.2
Bell, David – 10IM.3, 11AC.1
Bell, Dwayne – 2PH.4
Bencs, László – 1HA.1
Bendl, Jan – 2UA.4, 8UA.8
Benedict, Angela – 2IA.12
Beres, Nicholas – 2AP.3, 6BB.1
Berg, Matthew – 11IM.1
Bergin, Michael – 4UA.2, 6AQ.2, 10BA.5, 12IM.3
Berkemeier, Thomas – 3AC.4
Berkoff, Timothy A. – 7AQ.5
Berndt, Torsten – 7NP.1
Berte, Tyler – 8EP.2
Bertman, Steve – 2AQ.4
Bertram, Allan – 8BA.14
Bertrand, Amelie – 12SA.2
BeruBe, Kelly – 1HA.5
Besombes, Jean-Luc – 10BA.2, 11RA.5, 11SA.4, 12SA.2
Betha, Raghu – 2UA.9, 10BB.2
Beukes, Johan Paul – 7BB.6
Beydoun, Hassan – 3CC.1
Beyersdorf, Andreas – 2AQ.1, 2CC.3, 4AQ.2, 8AQ.3, 8AQ.4, 8CO.3
Bhave, Prakash – 7NM.5
Bianchi Sato, Bruno – 12CA.1
Bibby, Kyle – 8BA.8
Bililign, Solomon – 8IM.18
Bilonick, Richard – 2PH.1
Bin, Chen – 5BB.8, 10BA.3
Birky, Brian – 2IM.7
Biswas, Pratim – 1IA.6, 2BB.3, 2BB.6, 6IM.6, 7NM.1, 7NM.3, 7NM.7, 10BB.4
Bixler, Nathan E. – 6EP.6
Björneholm, Olle – 8AC.10
Blackford, David – 8IM.17
Blair, Sandra – 6AC.1, 6AC.2
Blanchard, Charles – 2AQ.2, 2AQ.5, 7AQ.6
Boeren, Sjef – 11BA.3
Bogan, Michael – 1AP.6
Bohannon, Kyle – 8BA.10, 8BA.11
Bohensky, Eugene – 8IM.15
Bond, Tami – Plenary.4, 10BB.3
Bondy, Amy – 2AQ.4
Bonifait, Laetitia – 8BA.2
Bonnaire, Nicolas – 8BA.14
Borbon, Agnes – 4UA.4
Borillo, Guilherme C. – 1HA.1, 1HA.3, 11CO.3, 11CO.5
Boris, Alexandra – 3CC.2
Bossuet, Christophe – 7BA.3
Bougiatioti, Aikaterini – 4AQ.1, 5AQ.5, 6AQ.2, 6AQ.3, 7AQ.2, 8BB.1, 10BA.5
Boulanger, Kelsey – 2IM.4, 8AC.1
Boutet, Sebastien – 1AP.6
Bowen, Josh – 2IA.6
Bower, Kristin – 8BA.1, 9BA.3
Boy, Michael – 8BB.3
Boyd, Christopher – 1AC.4, 5AQ.5
Bradburne, Christopher – 12BA.4
Brantley, Halley – 4UA.2
Brauer, Michael – 6PH.1
Brechtel, Fred – 8IM.9
Breznan, Dalibor – 2HA.7
Brink, LuAnn – 2PH.1
Brioude, Jerome – 4AQ.1, 5AQ.2
Brito, Joel – 2AC.6, 5AQ.1, 12CA.1
Brito, Mirna – 8BA.4
Brixey, Laurie – 12BA.3
Brock, Charles – 4AQ.5, 4AQ.7, 5AQ.2, 7AQ.1, 7AQ.2, 7AQ.4, 7AQ.7, 8IM.2
Brogan, James – 11IM.3
Brook, Jeff – 2HA.7, 6PH.1, 8SA.2
Brooks, Sarah D. – 8AC.7
Brooks, William – 6AC.4
Brouwer, Jack – 4UA.1, 6EP.4
Brown, Alexander – 6EP.6
Brown, Matthew – 2IM.5
Brown, Steven – 3UA.3, 10CA.6
Brown, Steven G. – 4AQ.1, 4AQ.5, 4AQ.7, 7AQ.1, 7AQ.7
Brown, Timothy – 5BB.1
Brune, William – 7NP.3, 10IM.2
Bryg, Victoria – 11CO.2
Budisulistiorini, Sri Hapsari – 2AC.8, 2AQ.6, 5AC.1, 5AQ.3, 5AQ.6, 8AC.13
Bullard, Robert – 2CC.5, 3AE.4, 3UA.1, 12RA.4, 12RA.5
Bunker, Kristin – 3AE.3
Buonanno, Giorgio – 4HA.1
Buonaugurio, Angela M. – 8BA.12
Burkart, Julia – 4UA.6, 11RA.4
Burling, Ian – 7BB.4
Burrell, Emily – 2NP.3
Burrows, Susannah – 11RA.3
Burton, Sharon P. – 2AQ.1, 4AQ.2, 7AQ.5
Buseck, Peter – 2BB.4
Buters, Jeroen – 1HA.5
Bzdek, Bryan R. – 2NP.2, 3UA.6
Cabot, Ross – 2PH.5
Calderón, Leonardo – 2AE.3
Camp, Madeline – 4AQ.6
Campbell, David – 1CC.1
Campbell, Steven – 1HA.6
Campuzano-Jost, Pedro – 2AC.6, 4AQ.4, 5AQ.1, 7AQ.1
Canagaratna, Manjula – 2AQ.6, 2IM.4, 5AQ.3, 6AC.3, 6AC.4
Canonaco, Francesco – 8BB.1
Cao, Leo N.Y. – 2AP.2
Cappa, Christopher – 4AC.1, 6BB.2, 7CA.3, 8UA.3, 11IM.3
Capps, Shannon – 6AQ.2, 7AQ.3
Carlson, James – 2BB.2
Carlton, Annmarie – 5AQ.1, 6AQ.1, 6AQ.2, 6AQ.6, 7AQ.3
Carmichael, Gregory – 8RA.2
Carrasquillo, Anthony – 2IM.4, 5AC.2
Carreras-Sospedra, Marc – 4UA.1, 6EP.4
Carrico, Christian – 1CC.5, 8BB.5
Carslaw, Ken – Plenary.1, 9NP.5
Carter, William P. L. – 1AC.7
Cassee, Flemming R – 11CO.5
Castillo-Quiñones, Javier Emmanuel – 2UA.8, 8CA.8
Casuccio, Gary – 1CC.1, 3AE.1, 3AE.3, 8SA.1, 10BA.1
Cate, David – 2PH.2
Cattamanchi, Adithya – 10IM.5
Cauda, Emanuele – 4HA.1
Caya, Alexandra – 3IA.2
Celo, Valbona – 8SA.2
Cerro, José Carlos – 11RA.1, 11SA.1, 11SA.5
Cerully, Kate – 5AQ.5, 6AQ.2, 6AQ.3
Cevaer, Steven – 5IM.7
Chadha, Tandeep – 7NM.3
Chae, Hoseung – 2UA.10
Chakrabarti, Amit – 1AP.1, 1AP.7, 2AP.4, 2AP.5, 4AP.3
Chakrabarty, Rajan K. – 1CC.1, 2AP.3, 6BB.1, 8BB.4, 8CA.10, 8CA.13, 10CA.1
Chamaret, Philippe – 11SA.3
Champion, Wyatt – 2IA.3, 3AE.6, 8BB.2, 8BB.6
Chan, Arthur – 2AC.1, 8AC.6
Chan, Chak K. – 8IM.9
Chan, Tak – 10C0.6
Chand, Duli – 2BB.4, 10BB.6
Chang, Deqiang – 2IA.1
Chang, Hankwon – 8NM.1
Charley, Perry – 2IA.6, 8BB.2
Charriere, Bruno – 6AC.6
Chartier, Ryan – 2BB.2
Chattopadhyay, Sulekha – 4UA.3
Chaudhry, Zahra – 12BA.4
Chen, Chia-Li – 1AC.3, 1AC.6, 2AC.5, 8EP.1
Chen, Da-Ren – 4HA.5, 4IM.1, 4IM.3, 5CH.1, 6IM.5
Chen, Gao – 2AQ.1, 8AQ.3, 8AQ.4
Chen, Haihan – 7NP.6
Chen, JianMin – 2NP.4
Chen, L.-W. Antony – 8CA.10, 8CA.13, 11IM.2
Chen, Laiguo – 2HA.4
Chen, Nai-Tzu – 8BA.5
Chen, Sheng-Chieh – 2IA.1, 5IM.6
Chen, Shu-Hua – 1CC.3
Chen, Wei-Ting – 8BA.5
Chen, Yixin – 1IA.6
Chen, Zhongming – 5AC.6
Cheng, Meng-Dawn – 4IM.4
Cheng, Yafang – 10BA.6
Cheng, Yung-Sung – 5CH.7
Cheung, Kalam – 8UA.6
Chevrier, Florie – 12SA.2
Chhabra, Puneet – 6AC.4
Chien, Chih-Hsiang – 2IM.7
Chin, Mian – 5BB.4
China, Swarup – 6BB.1
Cho, Hee-joo – 8CO.6, 8RA.1
Cho, Seung-Hyun – 2BB.2
Choi, Chi-Young – 2IM.2, 2IM.3
Choi, Hyun-Jin – 2CH.3
Choi, Jung-il – 2HA.12
Chou, Cédric – 8BA.14
Chow, Judith – 8CA.10, 8CA.13, 11IM.2
Chretien, Eve – 11RA.5
Chu, Kevin – 2AC.8
Chuang, Wayne – 7NP.7
Chung, Serena H. – 5BB.2
Cicero-Fernandez, Pablo – 4UA.3
Ciciora, Steven – 6IM.2
Cihan, Elif – 2IA.4
Cirino, Glauber – 12CA.1
Cirtog, Manuela – 5AC.8, 8AC.12
Civiš, Martin – 8IM.7
Clack, Herek – 8CA.1
Cleary, Thomas – 11CO.2
Cochran, Richard E. – 8AC.2, 11AC.2
Cocker III, David R. – 1AC.3, 1AC.6, 1AC.7, 2AC.2, 2AC.5, 8EP.1, 10CO.1
Coe, Hugh – 7BB.3, 7BB.4
Coe, James – 8PH.1
Coffey, Evan – 2IA.6
Coggon, Matthew – 1AC.1, 2AC.4, 9AC.2
Coghill, Matthew – 8BA.19
Cohen, Aaron – 6PH.1
Cohen, Ronald – 5PH.6
Collett, Jeffrey – 3CC.2, 6BB.5, 6EP.2, 7CA.2, 8AC.4, 10CA.6
Colletti, Peter – 12CA.3
Collier, Ashley – 2IA.6
Collier, Sonya – 7BB.1, 7BB.2, 7CA.1, 8UA.3
Collins, Don – 2NP.6, 8UA.2
Collins, Douglas – 10BA.4
Comstock, Jennifer – 4UA.7, 10BB.6
Conger, Matt – 8CO.4
Conin, Sebastien – 11RA.5
Connell, Daniel – 2PH.1
Cook, Anthony L. – 7AQ.5
Cornwell, Gavin – 10BA.4
Corporan, Edwin – 11IM.4
Correa, Sergio – 5PH.8, 10IM.6
Corson, Elizabeth – 8BA.18
Coz, Esther – 2BB.5
Craig, Rebecca – 2AQ.4
Craven, Jill – 7BB.4
Crawford, Ian – 8BA.13, 8BA.14, 8BA.15, 8BA.16
Crawford, James – 4AQ.2, 8AQ.3
Crljenica, Ivica – 9NP.1
Cross, Eben – 2IM.4, 8CO.2, 10BB.5
Croteau, Philip – 2AQ.6, 2IM.4, 5AQ.3
Crounse, John – 1AC.1, 4AQ.4, 7NP.3
Cummings, Molly – 11IM.3
Cusack, Michael – 2IA.9
Custer, Josh – 3CC.4
Czege, Jozsef – 1AP.2
D’Andrea, Stephen – 3CC.6, 8BA.4, 9NP.1
D’Anna, Barbara – 6AC.6
Dabdub, Donald – 4UA.1, 6EP.4, 7NP.6
Dabek-Zlotorzynska, Ewa – 8SA.2
Dabisch, Paul – 4IM.2, 8BA.1, 9BA.3, 9BA.5
Daher, Nancy – 2UA.3, 10BB.1, 10SA.6
Dal Maso, Miikka – 2NP.1
Dallmann, Timothy – 1UA.3, 1UA.5, 8UA.7, 11CO.1
Dameto de Espana, Carmen – 4UA.6
Dannemiller, Karen C. – 3IA.3
Dart, Andrew – 8IM.10
Dastanpour, Ramin – 10CO.5
Daumit, Kelly – 5AC.2
Davenport, Paul – 4HA.3
Davidovits, Paul – 11IM.3
Davidson, Cliff – 9UA.4
Day, Derek – 6EP.2
Day, Douglas – 2AC.6, 4AQ.4, 5AQ.1, 7AQ.1, 10IM.2
de Andrade, Jailson – 2UA.6
de Carvalho, Márcio – 2UA.6
de Gouw, Joost – 4AQ.1, 4AQ.5, 4AQ.7, 4UA.4, 5AQ.2, 5AQ.8, 7AQ.2, 7NP.3, 10IM.2
de la Rosa, Jesus – 2BB.5
de Luna, José Robert – 2UA.6
DeBord, D. Gayle – 2IM.10
Debosz, Jerzy – 8UA.4, 10SA.4
Decesari, Stefano – 7CA.2, 8AC.4
Dee, Scott – 11BA.5
DeFilipp, Samuel – 2BB.2
DeForest Hauser, Cindy – 2HA.2
Delanay, Tiphaine – 10BA.2, 11SA.2, 11SA.4
DeLeon-Rodriguez, Natasha – 10BA.5
Delfino, Ralph J. – 6AC.2
Delgado-Saborit, Juana – 7NM.5
Delmont, Anne – 6AC.6
Demattio, Anselm – 4UA.6
DeMott, Paul – 1CC.5, 6BB.2, 10BA.4
Denison, Michael – 2HA.7
Denny, Avery – 8BB.2
DePalma, Joseph – 2NP.2, 7NP.5
Detwiler, Tashana – 8AC.13
Dewan, Nitika – 9UA.2, 10SA.2
DeWinter, Jennifer – 3UA.3
DeWitt, H. Langley – 6AC.6, 11RA.1, 11SA.1, 11SA.5, 12SA.2
Deye, G. J. – 2AP.9
Dhaniyala, Suresh – 2AP.6, 2IM.5, 5CH.3, 5IM.7, 8IM.4
Dhawan, Steven – 4AQ.3, 6IM.6, 7CA.6
Dick, William – 8IM.6
Dilger, Marco – 1HA.5
Dillner, Ann – 7CA.5, 8CA.2, 12CA.2
Ding, Xiang – 6AC.5, 8CA.5, 9AC.1
Dittmar, Gunnar – 1HA.5
Docekalova, Veronika – 8UA.5, 8UA.8, 12CO.4
Dommen, Josef – 5AC.7
Don, Julien – 11SA.3
Donahue, Neil – 3AC.3, 4AP.2, 4UA.3, 6AC.5, 6BB.2, 6BB.3, 7NP.7, 8BB.3, 9AC.1
Dong, Can – 2CC.5, 3UA.1
Doussin, Jean-François – 5AC.8
Downard, Jared – 3AE.4
Drab-Sommesous, Emmanuelle – 11RA.5
Drake, Bill – 1IA.6
Drake-Richmon, Zora – 8IM.10
Dreizin, Edward – 12BA.1
Drewry, David – 8BA.18
Drinovec, Luka – 10CA.1
Du, Li – 4AQ.3, 7CA.6, 12SA.4
Duan, Hongxu – 8IM.14
Dube, William P. – 4AQ.1, 4AQ.7
Dubey, Manvendra – 6AC.4, 6BB.1, 6BB.2
Duchaine, Caroline – 8BA.2, 11BA.1
Duck, Thomas – 7BB.3
Duncan, Sara – 2IA.5
Dundon, Morgan – 2AC.9
Dunne, Eimear – 9NP.5
Dunshee, Jim – 8CO.1
Durbin, Thomas D. – 1UA.1, 8EP.2, 10CO.3
Durke, Erin M. – 1AP.4, 7NM.4, 8BA.12
Dutcher, Cari – 9AC.5
Dutcher, Dabrina – 3CC.4, 11IM.5
Dutkiewicz, Vincent A. – 10SA.5
Dye, John – 8BA.6
Eagar, Jershon – 3UA.5
Easter, Richard – 4AC.3
Edgerton, Eric – 2AQ.3, 2AQ.5, 2AQ.6, 5AQ.1, 5AQ.6, 5AQ.8, 6AQ.4, 7AQ.1, 7AQ.6, 7NP.3, 12RA.2
Edmonds, Jason – 1AP.4, 7NM.4, 8BA.12
<table>
<thead>
<tr>
<th>Name</th>
<th>Session(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edwards, Peter</td>
<td>4AQ.1, 4AQ.7</td>
</tr>
<tr>
<td>Edwards, Rufus</td>
<td>6AC.2</td>
</tr>
<tr>
<td>Eggersdorfer, Max L.</td>
<td>2AP.2</td>
</tr>
<tr>
<td>Ehara, Kensei</td>
<td>3AE.2</td>
</tr>
<tr>
<td>Ehleringer, James</td>
<td>1UA.7</td>
</tr>
<tr>
<td>Ehn, Mikael</td>
<td>6AC.3, 7NP.1</td>
</tr>
<tr>
<td>Ehrman, Sheryl</td>
<td>7BA.7</td>
</tr>
<tr>
<td>Eibl, Mary</td>
<td>10CO.4</td>
</tr>
<tr>
<td>Figuer Fernandez, Arantzazu</td>
<td>9IM.4, 9IM.5</td>
</tr>
<tr>
<td>Eisner, Alfred</td>
<td>12BA.3</td>
</tr>
<tr>
<td>Eisenberg, Thomas</td>
<td>2HA.10</td>
</tr>
<tr>
<td>El Hellani, Ahmad</td>
<td>2HA.10</td>
</tr>
<tr>
<td>Ellefson, Mark</td>
<td>6IM.4, 7NM.6</td>
</tr>
<tr>
<td>Elliott, Scott</td>
<td>11RA.3</td>
</tr>
<tr>
<td>Ellison, Luke</td>
<td>5BB.3</td>
</tr>
<tr>
<td>Elmashae, Yousef</td>
<td>2CH.1</td>
</tr>
<tr>
<td>Elperin, Tov</td>
<td>2CC.2</td>
</tr>
<tr>
<td>Elser, Miriam</td>
<td>11RA.1, 11SA.1, 11SA.5</td>
</tr>
<tr>
<td>Elvidge, Christopher</td>
<td>5BB.2</td>
</tr>
<tr>
<td>Elzey, Sherrie</td>
<td>2IM.13</td>
</tr>
<tr>
<td>Emerson, Joanne B.</td>
<td>11BA.2</td>
</tr>
<tr>
<td>Emmons, Louisa</td>
<td>5BB.2</td>
</tr>
<tr>
<td>Engelbrecht, Johann</td>
<td>1CC.1</td>
</tr>
<tr>
<td>Engling, Guenter</td>
<td>8CA.13</td>
</tr>
<tr>
<td>Epstein, Scott A.</td>
<td>6AC.1, 6AC.2, 8UA.6</td>
</tr>
<tr>
<td>Erdakos, Garnet</td>
<td>7NM.5</td>
</tr>
<tr>
<td>Erdesz, Frank</td>
<td>8IM.2</td>
</tr>
<tr>
<td>Erler, Anne Marie</td>
<td>12BA.2</td>
</tr>
<tr>
<td>Escobedo, Luis</td>
<td>3AE.6</td>
</tr>
<tr>
<td>Eshbaugh, Jonathan</td>
<td>4IM.2, 8BA.18</td>
</tr>
<tr>
<td>Eun, Hee-Ram</td>
<td>2IM.2, 2IM.3</td>
</tr>
<tr>
<td>Evanoski-Cole, Ashley</td>
<td>6EP.2</td>
</tr>
<tr>
<td>Evans, Greg J.</td>
<td>1UA.2, 1UA.4, 4UA.5, 8AC.6, 8CO.5, 8SA.2, 8UA.4</td>
</tr>
<tr>
<td>Evans, Kristin</td>
<td>5PH.7</td>
</tr>
</tbody>
</table>
Eversole, Jay – 1AP.2, 1AP.4
Ezell, Micheal, J. – 7NP.6
Facchini, M. Cristina – 7CA.2, 8AC.4
Fahey, David – 4AQ.1, 6IM.2, 7BA.4, 8CA.4, 11BA.2
Fahey, Kathleen – 7NM.5
Fahimi, Dorsa – 5CH.8
Fairley, David – 8PH.5
Fan, Wei Hong – 6BB.6
Fang, Jiaxi – 7NM.1, 7NM.3
Fang, Ting – 2AQ.3, 5PH.3, 8PH.2, 8PH.3, 8PH.4, 9PH.4
Farina, Salvatore – 3CC.6, 8CA.3
Farmer, Delphine – 3CC.6
Farnsworth, James – 5IM.1
Farquar, George R. – 8BA.9, 12BA.2
Fast, Jerome – 4AC.3
Faulkner, William – 4IM.5
Favez, Olivier – 7BA.3, 8BA.14, 10BA.2, 11SA.4
Feinberg, Stephen – 1UA.6
Felzenszwalb, Israel – 5PH.8
Feng, Chengcheng – 6EP.6
Feng, Jia-Yih – 10IM.5
Fennell, Donna – 9BA.4, 11BA.3
Fennelly, Kevin – 9BA.1
Feralio, Tyler – 11CO.4
Fergenson, David – 10IM.5
Fernandez Camacho, Rocio – 2BB.5
Ferrare, Richard – 4AQ.2, 7AQ.5
Ferro, Andrea R. – 2AP.6, 2IA.8, 2IA.12
Fiddler, Marc – 8IM.18
Fierer, Noah – 11BA.2
Finlayson-Pitts, Barbara J. – 7NP.6
Fischer, Emily – 7BB.4
Fissan, Heinz – 2AP.2, 5IM.6
Flagan, Richard – 2AC.4, 9AC.2, 9IM.3
Flament, Pascal – 1HA.7
Flynn, James – 4AQ.6
Flynn, Michael – 8BA.14
Fominykh, Andrew – 2CC.2
Forbes, Matthew – 1IA.5
Ford, Ian – 3NP.5
Forestieri, Sara – 11IM.3
Fort, Mike – 6AQ.4
Fortner, Edward – 4UA.2, 6AC.4, 10BB.6
Fortner, John – 7NM.7, 12CA.3
Foster, David – 6EP.5
Frank, Brian P. – 8IM.1
Frank, Matthias – 12BA.2
Franklin, Jonathan – 4UA.2, 6AC.4, 8CO.2
Freedman, Andrew – 6AC.4, 11IM.3
Friberg, Mariel – 8SA.3
Fritz, Patricia – 8IM.1
Frossard, Amanda – 11RA.3
Froyd, Karl D. – 4AQ.4
Fry, Juliane L. – 4AQ.7
Fry, Rebecca – 5PH.4, 9PH.3
Fu, Huaiyu – 8CA.5
Fu, Pingqing – 3UA.2
Fu, QingYan – 2NP.4
Fu, Yong – 1IA.6
Fung, Cha-Chen – 1IA.4
Gallagher, Martin – 7BA.3, 8BA.13, 8BA.14, 8BA.15, 8BA.16
Galvis, Boris – 4UA.2
Gantt, Brett – 7NM.5
Gao, Honglian – 8SA.6
Gao, Ru-Shan – 6IM.2, 7BA.4
Gao, Shaokai – 3CC.3
Gao, Shuang – 2CH.1, 3AE.5
Garcia Alonso, Susana – 2BB.5
Garcia-Fine, Sandra – 8BB.6
Gardner, Daniel – 8RA.5
Gaston, Cassandra – 5AC.1, 8SA.6
Gauthier-Levesque, Léa – 8BA.2
Gebhart, Kristi – 6EP.2
Geiger, Franz – 11AC.4
Gelbard, Fred – 6EP.6, 12CO.3
Gent, Janneane – 3IA.3
George, Kathryn – 7CA.5
Gerber, Benny – 7NP.6
Ghiassi, Hossein – 12CO.2
Gibson, Mark D. – 6PH.1
Gilberry, Jerome – 2AE.2, 12BA.3
Gilles, Mary – 2AQ.4, 2CC.9
Gilman, Jessica – 4AQ.1, 4AQ.7, 4UA.4, 5AQ.2
Giordano, Michael – 7BB.7
Giorio, Chiara – 1HA.6, 5AC.8
Girshick, Steven – 4AC.4, 4AP.1
Givehchi, Raheleh – 2CH.2
Godoi, Ana Flavia L. – 1HA.1, 1HA.3, 11CO.3, 11CO.5
Godoi, Ricardo H. M. – 1HA.1, 1HA.3, 11CO.3, 11CO.5
Godri-Pollitt, Krystal J. – 8CO.5
Goegan, P. – 2HA.7
Gold, Avram – 1AC.1, 2AC.8, 5AC.1, 5AQ.3, 5AQ.6, 5PH.4, 8AC.13, 9PH.3
Goldstein, Allen H. – 2AC.13, 5AQ.1, 5AQ.6, 7NP.3, 8IM.3, 12SA.2
Golly, Benjamin – 10BA.2, 11SA.4
Gomez, Odessa – 3IA.4
Gomez-Moreno, F. Javier – 2NP.5
Gonçalves Jr., Sérgio J. – 1HA.1, 1HA.3
Gong, Zhaoheng – 11AC.4, 12CA.1
Goodrick, Scott – 5BB.5
Gopalakrishnan, Ranganathan – 4AP.5
Gordon, Joanna – 2IA.6
Gordon, Timothy – 4AQ.1, 4AQ.5, 4UA.3, 7AQ.2, 7AQ.4, 8IM.2
Gordon, Wesley – 7NM.4
Gorjinezhad, Soudabeh – 2IA.4, 4AC.7
Gorkowski, Kyle – 3CC.1, 6AC.4
Gould, Ben – 5CH.8
Grady, Michael – 1IA.3
Granger, Gary – 8BA.19
Granath, Michael – 7BA.7
Grantz, Amanda – 9IM.3
Grassi, Haley – 2IA.12
Grassain, Vicki – 2CH.8, 8IM.11
Gratien, Aline – 5AC.8
Graus, Martin – 4AQ.1, 4AQ.7, 5AQ.2, 7AQ.4
Gray, Marshall – 12BA.3
Green, Sheldon – 5CH.5
Greenberg, James – 2NP.7
Grieshop, Andrew – 6AQ.5, 10CA.2
Griffin, Robert – 4AQ.2, 4AQ.6
Grinshpun, Sergey A. – 2CH.1, 3AE.5, 12BA.1
Groenenboom, John – 5AQ.4
Groulx, Nicolas – 11BA.1
Gröger, Thomas – 1HA.5
Gu, Hao – 1IA.2
Gu, Peishi – 1UA.5
Guariento, Lílian – 2UA.6
Guenther, Alex – 7NP.3
Guernion, Pierre-Yves – 10BA.2
Guerreiro, Egídio – 2UA.6
Guerreiro-García, Jesús – 2UA.8, 8CA.8
Guerrieri, David – 8IM.1
Guha, Suvajyoti – 9IM.2
Guillaud, Géraldine – 10BA.2, 11RA.5
Gun Ho, Lee – 2IM.2
Gundel, Lara – 5CH.8
Gunsch, Matthew – 8RA.5
Guo, Hongyu – 2AQ.3, 4AQ.3, 5AQ.5, 5PH.3, 6AQ.2, 6AQ.3, 7CA.6, 8PH.3
Guo, Yuncan – 8UA.1
Gutierrez, Alvaro – 4UA.3
Gyawali, Madhu – 8CA.10, 8CA.13
Gysel, Nicholas – 8EP.1
Hadley, Odelle – 8SA.6
Hagan, David – 4AQ.3, 5AQ.7, 6IM.6, 7CA.6
Hageman, Mitchell – 6EP.5
Hagler, Gayle – 4UA.2, 12IM.3, 12IM.4
Haglund, John – 4IM.5
Haindl, Richard – 7CA.7
Hakala, Jani – 6AC.3
Hallar, Anna Gannet – 7BA.5, 9NP.4
Hammond, Donald – 12SA.3
Han, Inkyu – 8UA.1
Han, Taewon – 9BA.2
Hand, Jenny – 6EP.2
Handorean, Alina M. – 3IA.4
Hanigan, David – 8AC.9
Hanisco, Tom – 4AQ.1, 5AQ.2
Hannigan, Michael – 2IA.6
Hansen, Anthony D.A. – 10CA.1
Hansen, Jaron – 2NP.3
Hanson, David – 3NP.3
Hara, Kazunori – 10BA.3
Harndorf, Horst – 1HA.5
Harper, David B. – 7AQ.5
Harris, Natushia – 2PH.4
Harrison, Roy M. – 7NM.5
Hart, Matthew – 1AP.4
Hasheminassab, Sina – 10SA.6
Hassan, Yassin – 3IA.2
Hatch, Lindsay E. – 8AQ.2, 8BB.3
Hayden, Katherine – 6EP.1
He, Meilu – 5CH.3
He, Quanfu – 6AC.5, 8CA.5
He, Siqin – 7NP.5
He, Siqin – 2AC.12
He, Xinjian – 2CH.1
Healy, David – 8BA.16
Healy, Robert – 1UA.2, 1UA.4, 4UA.5, 8SA.2, 8UA.4
Hee, Jon – 7BB.1, 7BB.2
Hegde, Satyanarayan – 4HA.3
Heinsohn, William – 1AP.1, 1AP.7, 2AP.4, 2AP.5
Hellebust, Stig – 11RA.1, 11SA.1, 11SA.5
Henderson, Dave – 8UA.4
Henneman, Lucas – 8SA.5
Hennigan, Christopher – 4UA.4, 9AC.4, 12CO.1, 12SA.1
Henry, Charles – 2PH.2
Hensley, Lisa – 8BA.10
Henze, Daven – 6PH.2
Herb, Jason – 3NP.4
Herber, Andreas – 11RA.4
Herckes, Pierre – 3UA.5, 8AC.8, 8AC.9
Hering, Susanne – 5AQ.1, 5IM.5, 6IM.3, 8IM.3, 8IM.16, 9IM.4, 9IM.5, 12SA.2
Herman, David – 5PH.1
Hermanson, Larry – 8CA.4
Hernandez, Mark T. – 3IA.4, 7BA.4, 8BA.19
Hernandez, Marta – 4HA.2
Herndon, Scott – 4UA.2, 6AC.4
Herod, Dennis – 8UA.4
Herrmann, Hartmut – 7NP.1
Hershey, Daniel – 8IM.1
Hettyiyadura, Anusha Priyadarshani Silva – 5AQ.4
Hidy, George – 2AQ.2, 7AQ.6
Higashi, Hidenori – 4IM.7
Hildebrandt Ruiz, Lea – 5AC.3
Hilken, Henry – 8PH.5
Hilker, Nathan – 1UA.2, 1UA.4, 8UA.4
Hill, Jason – 6PH.3
Hill, Steven – 4IM.6
Hill, Thomas – 10BA.4
Hiller, Karsten – 1HA.5
Hiltunin, Miia – 8BA.16
Hindle, Michael – 4HA.6
Hinsberg, William – 2AC.10
Hite, James – 6AQ.3
Hitzenberger, Regina – 4UA.6, 7CA.7
Hix, Andrew – 12SA.1
Hodas, Natasha – 7CA.2
Hoffman, Bill – 2IA.7
Hogan Jr., Christopher – 2AC.12, 4AP.5, 7NP.5
Hohaus, Thorsten – 12SA.2
Holben, Brent – 4AQ.2, 6PH.1
Holbrook, Landon – 2HA.6
Holloway, John – 4AQ.1, 4AQ.5, 4AQ.7, 5AQ.2, 7AQ.4
Holmén, Britt – 2AC.7, 8CO.1, 8CO.4, 11CO.4
Holmes, Heather – 8SA.3, 8SA.5, 12SA.5
Hoover, Mark D – 2IM.10
Hopke, Eleanor F. – 10SA.5
Hopke, Philip – 5PH.7, 10SA.4
Hopke, Philip K. – 10SA.5
Hoque, Farhana – 2AC.1
Hoque, Shamia – 7NM.5
Horan, Andrew J. – 2IM.11, 2NP.2, 3UA.6
Horn, Hans-Georg – 5IM.1, 5IM.2
Horne, Jeremy – 7NP.6
Horner, Elliott – 2IA.7
Horner, Sharon – 3IA.5
Horns, John – 11BA.5
Horowitz, Larry – 2CC.8, 5AQ.2
Hosseini, Seyyedehsan – 10CO.3
Hostettler, Chris – 4AQ.2, 7AQ.5
Hough, Lloyd – 12BA.5
Houle, Frances – 2AC.10
<table>
<thead>
<tr>
<th>Name</th>
<th>Titles and Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hovorka, Jan</td>
<td>2UA.1, 2UA.2, 2UA.4, 8IM.7, 8UA.5, 8UA.8, 12CO.4</td>
</tr>
<tr>
<td>Hritz, Andrew</td>
<td>11IM.5</td>
</tr>
<tr>
<td>Hsu, Yu-Mei</td>
<td>2IM.7</td>
</tr>
<tr>
<td>Hu, Jianlin</td>
<td>1CC.3</td>
</tr>
<tr>
<td>Hu, Lu</td>
<td>4AQ.3, 5AQ.7, 7CA.6</td>
</tr>
<tr>
<td>Hu, Shaohua</td>
<td>1UA.1, 10CO.3</td>
</tr>
<tr>
<td>Hu, Weiwei</td>
<td>2AC.6, 5AQ.1, 7AQ.1, 10IM.2</td>
</tr>
<tr>
<td>Hu, Yongtao</td>
<td>5BB.7, 8AQ.5, 8SA.3, 12SA.5</td>
</tr>
<tr>
<td>Huai, Tao</td>
<td>1UA.1, 10CO.3</td>
</tr>
<tr>
<td>Huang, Dao</td>
<td>5AC.6</td>
</tr>
<tr>
<td>Huang, Xian</td>
<td>2UA.9</td>
</tr>
<tr>
<td>Hubbe, John</td>
<td>4UA.7, 10BB.6</td>
</tr>
<tr>
<td>Hudgins, Charles</td>
<td>2CC.3, 8CO.3</td>
</tr>
<tr>
<td>Huey, Greg</td>
<td>1AC.4</td>
</tr>
<tr>
<td>Huffman, Donald R.</td>
<td>7BA.1</td>
</tr>
<tr>
<td>Huffman, J. Alex</td>
<td>7BA.1, 7BA.3, 8BA.13, 8BA.14, 8BA.15, 8BA.16, 10BA.6</td>
</tr>
<tr>
<td>Hunter, James</td>
<td>2IM.4</td>
</tr>
<tr>
<td>Hurtado, Lilia</td>
<td>2UA.8, 8BA.4, 8CA.8</td>
</tr>
<tr>
<td>Husain, Liaquat</td>
<td>10SA.5</td>
</tr>
<tr>
<td>Hussain, Mirza M</td>
<td>3UA.4</td>
</tr>
<tr>
<td>Hwang, In-Kyu</td>
<td>2IM.2, 2IM.3</td>
</tr>
<tr>
<td>Häkkinen, Silja</td>
<td>3AC.5, 9NP.1</td>
</tr>
<tr>
<td>Ichoku, Charles</td>
<td>5BB.3</td>
</tr>
<tr>
<td>Iida, Kenjiro</td>
<td>3AE.2</td>
</tr>
<tr>
<td>Imre, Dan</td>
<td>6EP.5, 10IM.3, 11AC.1, 11AC.3</td>
</tr>
<tr>
<td>Indugula, Reshmi</td>
<td>12BA.1</td>
</tr>
<tr>
<td>Isaacman, Gabriel</td>
<td>5AQ.1, 7NP.3, 8IM.3, 12SA.2</td>
</tr>
<tr>
<td>Ishakis, Robert</td>
<td>2AC.9</td>
</tr>
<tr>
<td>Ito, Akinori</td>
<td>8CA.9</td>
</tr>
<tr>
<td>Ivey, Cesunica</td>
<td>12SA.5</td>
</tr>
<tr>
<td>Iwasaka, Yasunobu</td>
<td>10BA.3</td>
</tr>
<tr>
<td>Izumi, Jessica</td>
<td>9AC.4</td>
</tr>
<tr>
<td>Jaafar, Malek</td>
<td>2UA.3</td>
</tr>
</tbody>
</table>
Jaars, Kerneels – 7BB.6
Jacobs, Julia – 2IA.12
Jaeger, Wolfgang – 12CA.5
Jaffe, Dan – 7BB.1, 7BB.2, 8SA.6
Jaffrezo, Jean-Luc – 10BA.2, 11RA.5, 11SA.3, 11SA.4, 11SA.5, 12SA.2
Jahrling, Peter – 8BA.10, 8BA.11
James, Charles – 8BB.6
Jang, Hee Dong – 8NM.1
Jang, Myoseon – 3AC.6, 4AC.2
Jansen, John – 2AQ.5, 6AQ.4, 7AQ.6
Jaramillo, Isabel C. – 12CO.2
Jaspers, Ilona – 5PH.4, 9PH.3
Jathar, Shantanu – 1HA.4, 4AC.1, 4UA.3, 7CA.3
Jayanty, R.K.M. – 1CC.1
Jayarathne, Thilina – 3UA.1, 5AQ.4, 6BB.4, 8BA.17, 8BB.5
Jayasuriya, Ishara – 8IM.4
Jayne, John – 2AQ.6, 2IM.4, 5AQ.3, 6AC.3, 6AC.4, 10BB.5, 12SA.2
Jen, Coty – 3NP.3
Jenkins, Amanda – 7NM.4
Jeong, Cheol-Heon – 1UA.2, 1UA.4, 8CO.5, 8SA.2, 8UA.4
Jeong, Haewoo – 8AC.2
Jia, Shiguo – 6BB.6
Jia, Yiqin – 8PH.5
Jiang, Qi – 3UA.2
Jiang, Yi – 7NM.7
Jiao, Wan – 12IM.4
Jimenez, Jose-Luis – 2AC.6, 4AQ.4, 5AQ.1, 6AC.3, 7AQ.1, 10IM.2
Johnson, James – 6IM.2
Johnson, Jason – 5IM.2
Johnson, Karoline – 12IM.3
Johnson, Kent – 10CO.3
Johnson, Kent C. – 1UA.1
Johnson, Matthew – 12RA.5
Johnson, Reed – 8BA.10, 8BA.11
Johnson, Tim – 2IM.13
Johnston, Murray – 2AC.11, 2IM.11, 2NP.2, 3UA.6, 7NP.5, 8AC.5, 8CA.11
Jokinen, Tuija – 7NP.1
Jokiniemi, Jorma – 1HA.5
Jones, A. Daniel – 8BA.9
Jorquera, Hector – 1IA.7, 2IA.3, 10SA.1
Josipovic, Miroslav – 7BB.6
Julin, Jan – 4AP.2, 9NP.1
Jung, Heejung S. – 1IA.3, 1UA.1, 10CO.3
Junninen, Heikki – 6AC.3, 7NP.1
Kacarab, Mary – 1AC.7, 2AC.2, 2AC.5, 10CO.1
Kaeser, Cynthia J. – 8BA.9
Kahn, Ralph – 5BB.4, 6PH.1
Kaiser, Jennifer – 4AQ.1, 5AQ.2
Kalberer, Markus – 1HA.6, 5AC.8
Kampf, Christopher – 9PH.5
Kanaparthi, Mark – 8IM.4
Kanashova, Tamara – 1HA.5
Kane, Staci – 12BA.2
Kang, Chang Ki – 2BB.6
Kang, Min Soo – 11RA.2
Kangasluoma, Juha – 3NP.1, 5IM.4
Karagkiozidou, Olga – 10BB.1
Karakurt Cevik, Basak – 4AQ.6
Karaoghlanian, Nareg – 2HA.10
Karavalakis, Georgios – 8EP.2, 10CO.3
Karev, Andrew – 5IM.8
Karg, Erwin – 1HA.5
Karnezi, Eleni – 4AC.6
Karthikeyan, Subramanian – 2HA.7
Kasumba, John – 2AC.7
Kathleen, Verratti – 12BA.4
Kathmann, Shawn – 2CC.9, 3NP.5
Kato-Maeda, Midori – 10IM.5
Kautzman, Kathryn – 2AC.8, 2AC.9
Kaye, Paul – 8BA.16
Keady, Patricia – 11BA.2
Keebaugh, Andrew – 5PH.1
Keles, Melek – 2IA.4
Kerkhof, Lee – 11BA.3
Kerl, Paul – 6PH.4
Kerminen, Veli-Matti – 7BB.6, 7NP.1
Kesavan, Jana – 2HA.8
Keskinnen, Jorma – 2NP.1, 11BA.4
Keutsch, Frank – 4AQ.1, 4AQ.4, 5AQ.2, 7CA.2, 8AC.4
Khan, Nabil – 1AC.5
Khare, Peeyush – 3IA.1
Khlystov, Andrey – 2PH.4, 6AQ.5, 8BA.5, 9AC.3, 10CA.2
Khurshid, Shahana – 3IA.5, 3IA.6
Khwaja, Haider A – 3UA.4
Kim, Chang Hyuk – 8IM.5
Kim, Chong – 2HA.12
Kim, Dohyung – 11RA.2
Kim, Ellen – 2IM.3
Kim, Gibaek – 8RA.1, 10IM.4
Kim, Hongsuk – 2UA.7
Kim, Hwajin – 8UA.3
Kim, Jeong-Uk – 2CH.3
Kim, Jin Yong – 2CH.1, 3AE.5
Kim, Jin-Kwon – 2IM.3
Kim, Sun Kyung – 8NM.1
Kim, Yong-Ha – 8EP.3
Kim, Yoo Jung – 8RA.2
Kimmel, Joel – 6AC.3
Kimoto, Shigeru – 8IM.6
King, Laura – 2AQ.3, 4AQ.3, 5AQ.5, 5PH.3, 7CA.6, 8PH.3
King, Maria D. – 3IA.2
Kinney, Kerry – 3IA.2, 3IA.5, 3IA.6
Kinsey, John – 11IM.4
Kirkland, Jeffrey R. – 2IA.5, 8AC.4
Kiselev, Denis – 7BA.3
Kittelsson, David – 2IM.9
Klán, Miroslav – 8IM.7, 12CO.4
Kleeman, Michael – 1CC.3, 2CC.7, 4AC.1, 7CA.3
Klein, Barbara – 2IA.6, 8BB.2
Kleinman, Lawrence – 2BB.4, 7BB.1, 7BB.2, 10BB.6
Kleinman, Michael – 5PH.1, 6AC.2
Klems, Joseph – 10CA.3
Kline, Jamie – 8BA.1
Knight, Tamika – 9BA.5
Knighton, Berk – 6AC.4
Knipping, Eladio – 5AQ.3, 5AQ.6, 6EP.3, 7AQ.6
Knopf, Daniel – 2CC.9
Knue, Joseph – 8CA.10, 8CA.13
Kobayashi, Fumihisa – 10BA.3
Kobrzech, Filip – 8UA.5, 8UA.8, 12CO.4
Kodros, John – 8CA.3, 8RA.4
Koenig, Theodore – 5AC.7
Kohler, David – 10IM.5
Kok, Greg – 7BA.3, 7BA.4, 8BA.13, 8BA.14, 8BA.15, 8BA.19
Kollman, Matthew – 5PH.5
Konstantinidis, Konstantinos – 10BA.5
Koss, Abigail – 5AQ.8
Kostenidou, Evangelia – 8BB.1
Kostle, Pam – 8BA.17
Kostle, Pamela – 3AE.4
Kouras, Athanasios – 10BB.1
Kourtchev, Ivan – 5AC.8
 Koutrakis, Petros – 5PH.5
 Kovalcik, Kasey – 7NM.5
 Kovarik, Libor – 2CC.9
 Kozakova, Jana – 2UA.1
 Kozlak, Evgenii I. – 11AC.2
 Krasnomowitz, Justin – 2IM.11
Krasovitov, Boris – 2CC.2
Krechmer, Jordan – 6AC.3
Kreidenweis, Sonia – 1CC.5, 3CC.2, 6BB.2, 6BB.5, 7BB.5, 8BB.5, 10BA.4
Kreisberg, Nathan – 5AQ.1, 8IM.3, 8IM.16, 12SA.2
Krieger, Roger – 6EP.5
Kroll, Jesse – 2IM.4, 5AC.2, 8AC.1, 8CO.2, 10BB.5
Krug, Jonathan – 8IM.10
Krumins, Valdis – 9BA.4, 11BA.3
Kruse, Tomas – 11BA.3
Ku, Bon Ki – 2AP.9, 2HA.3
Kuang, Chongai – 3NP.1, 4UA.7, 5IM.4, 6IM.3
Kubatova, Alena – 8AC.2, 11AC.2
Kubsh, Joseph – 10CO.6
Kuerten, Andreas – 9NP.5
Kuhn, Jens – 8BA.10
Kulkarni, Gourihar – 2CC.9
Kulkarni, Pramod – 2HA.3, 3AE.5
Kulmala, Markku – 3NP.1, 5AC.8, 5IM.4, 7BB.6, 7NP.1, 8BA.16
Kumar, K. Raghavendra – 1CC.4
Kumar, Naresh – 8SA.1
Kumar, Sangeetha – 2IA.12
Kumarathasan, P. – 2HA.7
Kumbhani, Sambhav – 2NP.3
Kumita, Mikio – 4IM.7
Kuster, Bill – 4UA.4
Kutta, Andrew – 1IA.6
Kwak, Jihyun – 10IM.4
Laakso, Lauri – 7BB.6
Lacey, Forrest – 6PH.2
Lack, Daniel – 4AQ.1, 7AQ.2, 7AQ.4, 10CA.5
Lackemeyer, Matthew – 8BA.10, 8BA.11
Lagrosas, Nofel – 6PH.1
Lahm, Pete – 5BB.1
Laing, James R. – 10SA.5
<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laksmono, Hartawan</td>
<td>1AP.6</td>
</tr>
<tr>
<td>Lambe, Andrew</td>
<td>11IM.3</td>
</tr>
<tr>
<td>Landeros, Bertha</td>
<td>8BA.4</td>
</tr>
<tr>
<td>Langridge, Justin</td>
<td>10CA.5</td>
</tr>
<tr>
<td>Larkin, Narasimhan (Sim)</td>
<td>5BB.1</td>
</tr>
<tr>
<td>Larriba-Andaluz, Carlos</td>
<td>4AC.4, 7NP.5</td>
</tr>
<tr>
<td>Laskin, Alexander</td>
<td>1AC.2, 2AQ.4, 2CC.9, 3AC.1, 5AC.4, 5AC.7, 8AC.3</td>
</tr>
<tr>
<td>Laskin, Julia</td>
<td>3AC.1, 5AC.7, 8AC.3</td>
</tr>
<tr>
<td>Lassar, Walfried</td>
<td>8BA.13, 8BA.14, 8BA.15</td>
</tr>
<tr>
<td>Lau, Gabriel</td>
<td>3NP.5</td>
</tr>
<tr>
<td>Lauber, C.S.</td>
<td>2AP.9</td>
</tr>
<tr>
<td>Lavoue, David</td>
<td>8SA.5</td>
</tr>
<tr>
<td>Law, Daniel</td>
<td>4AQ.1, 7AQ.2, 7AQ.4, 8IM.2</td>
</tr>
<tr>
<td>Lawrence, Joy</td>
<td>5PH.5</td>
</tr>
<tr>
<td>Lawson, David</td>
<td>2PH.5</td>
</tr>
<tr>
<td>Leaderer, Brian</td>
<td>3IA.3</td>
</tr>
<tr>
<td>Leaitch, Richard</td>
<td>3NP.6, 8RA.4, 11RA.4</td>
</tr>
<tr>
<td>Leão, Danilo</td>
<td>2UA.6</td>
</tr>
<tr>
<td>Leavey, Anna</td>
<td>1IA.6, 2BB.3, 10BB.4</td>
</tr>
<tr>
<td>Lednicky, John</td>
<td>9BA.1</td>
</tr>
<tr>
<td>Lee, Ben</td>
<td>4AQ.1</td>
</tr>
<tr>
<td>Lee, Ben H.</td>
<td>4AQ.7</td>
</tr>
<tr>
<td>Lee, Christopher</td>
<td>10BA.4</td>
</tr>
<tr>
<td>Lee, DongYoub</td>
<td>2HA.5</td>
</tr>
<tr>
<td>Lee, Eon</td>
<td>1IA.1</td>
</tr>
<tr>
<td>Lee, Gun-Ho</td>
<td>2IM.3</td>
</tr>
<tr>
<td>Lee, Guo-Rui</td>
<td>4AP.7</td>
</tr>
<tr>
<td>Lee, Heesung</td>
<td>10IM.4</td>
</tr>
<tr>
<td>Lee, Hong-Ku</td>
<td>2IM.2, 2IM.3, 8IM.19</td>
</tr>
<tr>
<td>Lee, Hyun Ji</td>
<td>3AC.1</td>
</tr>
<tr>
<td>Lee, Kibum</td>
<td>2AE.3</td>
</tr>
<tr>
<td>Lee, Lindsay</td>
<td>Plenary.1</td>
</tr>
<tr>
<td>Lee, Myong-Hwa</td>
<td>2CH.3</td>
</tr>
<tr>
<td>Lee, Pius</td>
<td>8AQ.1</td>
</tr>
</tbody>
</table>
Lee, Sang-Mi – 8UA.6
Lee, Seokhwan – 2UA.7
Lee, Shanhu – 5AQ.8, 6AQ.2, 7NP.3
Lee, Sunyoup – 2UA.7
Lee, Taehyoung – 7BB.5, 10CA.6
Lee, Yin-Nan – 7CA.1
Lefer, Barry – 4AQ.6
Lehtipalo, Katrianne – 2AP.8, 3NP.1, 9NP.1
Leith, David – 6IM.1
Leithead, Amy – 6EP.1
Lennon, Andrew – 12CO.3
Lentz, Henry – 3AE.1
Leong, Yu Jun – 4AQ.6
Leoni, Cecilia – 2UA.2
Léoz-Garziandia, Eva – 10BA.2, 11SA.4
Leppä, Johannes – 9IM.3
Lerner, Brian – 4AQ.1, 4AQ.7, 5AQ.2
Lersch, Traci – 3AE.1, 10BA.1
Lestari, Puji – 6PH.1
Levin, Ezra – 1CC.5, 6BB.2, 8BB.5, 10BA.4
Lewis, Gregory – 5IM.5, 9IM.4
Lewis, Samuel – 10CO.4
Li, Huan – 4IM.5
Li, Jiaying – 3AC.6
Li, Jie – 3UA.2
Li, Jingyi – 7CA.4
Li, Lijie – 1AC.3, 1AC.6
Li, Mingdong – 4AP.6, 8IM.8, 9IM.1, 9IM.2
Li, Ning – 3AE.6, 9IM.5
Li, Rui – 10IM.2
Li, Shao-Meng – 6EP.1, 10CA.4, 11RA.4
Li, Wanyi – 1AC.5
Li, Xiang – 1UA.3, 11CO.1
Li, Xiaoguang – 4HA.7
Li, Xiaoying – 7CA.5, 8CA.5
Li, Xinxin – 5AQ.3
Li, Yang – 1UA.1, 10CO.3
Li, Yi – 6EP.2
Li, Zhongshu – 1IA.4
Liacos, James – 8CA.12
Liao, Jin – 4AQ.1, 4AQ.4, 4AQ.5, 4AQ.7, 5AQ.2, 7AQ.2, 7AQ.4
Liederman, David – 5CH.8
Liggio, John – 6EP.1, 10CA.4
Lighty, JoAnn S. – 12CO.2
Lignell, Hanna – 9AC.2
Lim, Christopher – 8AC.1
Lim, Yong – 2IA.5, 5CC.2, 5AC.5, 8AC.4
Lin, Guangxing – 8CA.9
Lin, Jack – 2AQ.1, 4AQ.1, 7AQ.2, 8AQ.5
Lin, John – 1UA.7
Lin, Ming-Yeng – 8BA.5
Lin, Sih-Fan – 4AP.7
Lin, Xiuli – 5CH.1
Lin, Ying-Hsuan – 2AC.8, 5AC.1, 5PH.4, 9PH.3
Lipsky, Eric – 4UA.3, 8CA.12
Liu, Benjamin – 8IM.14
Liu, Chun-Nan – 4AP.7
Liu, Dantong – 6AC.4
Liu, Di – 4IM.3
Liu, Fengjie – 7BA.7
Liu, Fengshan – 1AP.5, 10CO.6
Liu, Li – 6BB.1
Liu, Pai – 7NM.1, 7NM.3
Liu, Peng – 5BB.7
Liu, Pengfei – 11AC.5, 12CA.1
Liu, Peter – 6EP.1
Liu, Qiaoling – 6IM.5
Liu, Shang – 6AC.4, 6BB.2
Liu, Xiaoxi – 1AC.4
Liu, Yang – 6PH.1
Liu, Yongchun – 10CA.4
Loeb, Julia – 9BA.1
Loh, Duane – 1AP.6
Londeree, Jessica – 2BB.3
Longest, Worth – 2HA.6, 4HA.6
Longo, Karla – 4UA.7
Lonsdale, Chantelle – 7BB.4
Lopez-Hilfiker, Felipe – 4AQ.1, 4AQ.7, 8SA.6
Lopez-Yglesias, Xerxes – 8IM.9
Louie, David L. Y. – 6EP.6
Loza, Christine – 11BA.5
Lu, Chenyang – 1IA.6
Lucero, Daniel – 12CO.3
Ludtka, Gerard – 4IM.4
Ludwig, Wolfgang – 7CA.7
Luo, Gan – 4AC.5
Luo, Wentai – 8AQ.2, 8BB.3
Luthra, Antriksh – 8PH.1
Ma, Shexia – 2HA.4
Ma, Young-il – 8RA.2
Macdonald, Annie-Marie – 8RA.4
MacKinnon, Michael – 6EP.4
MacMillan, Amanda – 6AC.1
Maddox, Christine – 4UA.3
Mader, Brian – 6IM.4, 7NM.6, 11BA.5
Madry, William – 3CC.4
Maestre, Juan Pedro – 3IA.2, 3IA.5, 3IA.6
Magara-Gomez, Kento – 2CC.7
Mahdavipour, Omid – 5CH.8
Mahish, Manasi – 2NP.6
Mahmood, Ayesha – 8BA.6
Mahon, Brendan – 5AC.8
Maier, Axel – 6EP.5
Mainelis, Gediminas – 2AE.3, 4HA.2, 7BA.6, 9BA.2, 9BA.4, 11BA.3

181
Mainprize, Matthew W. – 3AE.4
Majestic, Brian – 9UA.2, 10SA.2
Maki, Teruya – 10BA.3
Maldonado, Hector – 4UA.3
Malfatti, Francesca – 10BA.4
Malloy, Quentin – 8IM.10
Manoli, Evangelia – 10BB.1
Manzi, Antonio O. – 2AC.6, 5AQ.1, 12CA.1
Mao, Jingqiu – 5AQ.2
Marçal, João – 2UA.6
Marchand, Nicolas – 6AC.6, 11RA.1, 11SA.1, 11SA.3, 11SA.5, 12SA.2
Marcotte, Aurelie – 3UA.5
Marecek, Petr – 8UA.5, 8UA.8, 12CO.4
Maricq, Matti – 4UA.3, 5CH.4, 10CO.2
Markovic, Milos – 4AQ.1, 7AQ.2, 8CA.4
Marr, Linsey – 3IA.1, 8BA.8
Marshall, Julian – 6PH.3, 6PH.5
Marshall, Lynne – 4HA.4
Martin, Lucas – 11CO.3, 11CO.5
Martin, Randall – 6PH.1
Martin, Randy – 2IA.11, 12IM.1
Martin, Robert – 2AQ.1, 2CC.3, 8CO.3
Martin, Scot – 2AC.6, 4UA.7, 5AQ.1, 11AC.4, 11AC.5, 12CA.1
Martinez, Andrew – 7NP.6
Martinez, Raul – 4AQ.3, 5AQ.7, 7CA.6, 10BB.4
Martins, Vanderlei J. – 6PH.1
Mas, Sébastien – 6AC.6
Maskey, Shila – 2UA.10, 8CO.6
Massetti, John – 4UA.3
Massoli, Paola – 4UA.2, 6AC.3, 6AC.4
Masson, Nick – 2IA.6
Mathew, Nimmy – 10BA.5
Mathiot, Sebastien – 11SA.3
Matsuhashi, Hiroaki – 4IM.7
<table>
<thead>
<tr>
<th>Name</th>
<th>Code Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matsuoka, Jeffery</td>
<td>8PH.5</td>
</tr>
<tr>
<td>Maughan, Justin</td>
<td>2AP.5</td>
</tr>
<tr>
<td>Mauldin, Roy Lee III</td>
<td>6AC.3</td>
</tr>
<tr>
<td>Maurin, Nicolas</td>
<td>5AC.8</td>
</tr>
<tr>
<td>Mauzerall, Denise</td>
<td>2CC.8</td>
</tr>
<tr>
<td>Maxut, Aurelia</td>
<td>5AC.7</td>
</tr>
<tr>
<td>May, Andrew</td>
<td>4UA.3, 4UA.4, 7BB.5, 12CO.1</td>
</tr>
<tr>
<td>May, Nathaniel</td>
<td>8RA.5</td>
</tr>
<tr>
<td>Mayer, Margaret</td>
<td>2IA.6</td>
</tr>
<tr>
<td>Mazzei, Jose</td>
<td>5PH.8</td>
</tr>
<tr>
<td>Mazzoleni, Claudio</td>
<td>6BB.1, 6BB.2</td>
</tr>
<tr>
<td>Mazzoleni, Lynn</td>
<td>8AC.4</td>
</tr>
<tr>
<td>Mbengue, Saliou</td>
<td>1HA.7</td>
</tr>
<tr>
<td>McAughey, John</td>
<td>2HA.1, 2PH.5</td>
</tr>
<tr>
<td>McCabe, Kevin</td>
<td>8BA.19</td>
</tr>
<tr>
<td>McCluskey, Christina S.</td>
<td>1CC.5, 10BA.4</td>
</tr>
<tr>
<td>McComiskey, Allison</td>
<td>7AQ.1</td>
</tr>
<tr>
<td>McDade, Charles</td>
<td>12IM.2</td>
</tr>
<tr>
<td>McDonald-Buller, Elena</td>
<td>5BB.2</td>
</tr>
<tr>
<td>McGivern, W. Sean</td>
<td>8AC.11, 10CA.3</td>
</tr>
<tr>
<td>McGrath, Meaghan</td>
<td>2AE.2</td>
</tr>
<tr>
<td>McGraw, Robert</td>
<td>1AP.3</td>
</tr>
<tr>
<td>McKenzie, James</td>
<td>8BB.2</td>
</tr>
<tr>
<td>McLaughlin, Richard</td>
<td>6IM.2</td>
</tr>
<tr>
<td>McMeeking, Gavin</td>
<td>1CC.5, 4AQ.3, 6BB.2, 7BA.3, 7BA.4, 7BB.4, 7BB.5, 7CA.6, 8BA.13, 8BA.14, 8BA.15, 8BB.5</td>
</tr>
<tr>
<td>McMurry, Peter</td>
<td>3NP.3, 4AP.5</td>
</tr>
<tr>
<td>McNair, Fran</td>
<td>8SA.6</td>
</tr>
<tr>
<td>McNeill, V. Faye</td>
<td>1AC.5, 3AC.5, 6AQ.6, 7CA.3</td>
</tr>
<tr>
<td>McQueen, Trevor</td>
<td>1AP.6</td>
</tr>
<tr>
<td>McQuilling, Alyssa</td>
<td>12RA.1</td>
</tr>
<tr>
<td>Mehadi, Ahmed</td>
<td>12SA.3</td>
</tr>
<tr>
<td>Mei, Fan</td>
<td>4UA.7, 7CA.1, 10BB.6</td>
</tr>
<tr>
<td>Melanson, Al</td>
<td>8UA.4</td>
</tr>
</tbody>
</table>
Mogensen, Ditte – 8BB.3
Molina, Luisa – 2UA.8, 8BA.4, 8CA.8
Montgomery, James – 5CH.5
Montoya, Lupita – 1IA.7, 2IA.3, 2IA.13, 3AE.6, 8BB.2, 8BB.6, 10SA.1
Moore, Kori – 2IA.11, 12IM.1
Moore, Richard – 2AQ.1, 2CC.3, 8AQ.3, 8AQ.4, 8CO.3
Moore, Tom – 5BB.8
Moosmuller, Hans – 1CC.1, 2AP.3, 6BB.1, 8BB.4, 8CA.10, 8CA.13, 10CA.1
Morales, Sebastien – 5AC.8
Morales Betancourt, Ricardo – 1CC.7, 7AQ.2
Moreno-Cruz, Juan – 6PH.4
Morphy, Timothy – 12SA.3
Morrical, Bradley D. – 10IM.5
Moussa, Samar – 6EP.1
Moussiopoulos, Nicolas – 10BB.1
Mudunkotuwa, Imali – 2CH.8, 8IM.11
Mueller, Stephen – 12RA.3
Mulholland, George – 4AP.6, 8IM.8, 9IM.2, 11CO.2
Mulholland, James – 8SA.3, 8SA.5, 12SA.5
Munoz, Tony – 8UA.4
Muntean, George – 10CO.4
Murphy, Benjamin – 4AC.6
Murphy, Daniel – 4AQ.4, 8IM.2, 10CA.5
Murphy, Shane – 10CA.5
Murray, Alison – 7BA.5
Myles, LaToya – 12RA.2
Müller, Laarnie – 1HA.5
Na, Kwangsam – 4UA.3
Nadal, Marie-Helene – 7BA.3
Nadykto, Alexey – 3NP.4
Nahid, Payam – 10IM.5
Naik, Vaishali – 2CC.8
Najt, Paul – 6EP.5
Nakajima, Shusuke – 4IM.7
Nakanishi, Junko – 3AE.2
Nakao, Shunsuke – 1CC.5, 3CC.2, 6BB.4, 8BB.5
Nalin, Marcelo – 11CO.5
Nallathamby, Punith – 10SA.3
Napolitano, Denise – 3UA.5, 8AC.8
Naqwi, Amir – 8IM.14
Narayanaswamy, Kushal – 6EP.5
Nasr, Babak – 2AP.6
Nayebare, Shedrack R – 3UA.4
Nazarenko, Yevgen – 10IM.1
Ndonga, Mwangi – 6IM.1
Negron-Marty, Arnaldo – 10BA.5
Nenes, Athanasios – 1CC.6, 1CC.7, 2AQ.1, 5AQ.5, 5BB.7, 6AQ.2, 6AQ.3, 6PH.4, 7AQ.2, 8AQ.5, 8BB.1, 8EP.3, 10BA.5
Neto, Penteado – 11CO.3, 11CO.5
Neuman, J. Andrew – 4AQ.5, 4AQ.7, 5AQ.2
Newburn, Matt – 2AC.6
Newsome, J. Randall – 2BB.2
Ng, Jessica – 8RA.4
Ng, Nga Lee – 1AC.4, 4UA.2, 5AQ.5, 5PH.5, 6AC.4, 6AQ.2, 6AQ.3, 6BB.2, 8AQ.5, 9PH.4
Nguyen, Ngoc – 4UA.3, 12CO.1
Nguyen, Son Duy – 5CH.8
Nguyen, Thien Khoi – 5AQ.1, 7AQ.3
Nguyen, Tran – 1AC.1, 2AC.4, 7NP.3
Nhliziyo, Victor – 2AQ.4
Nie, Yao – 7NM.7
Nilsson, Anders – 1AP.6
Nizkorodov, Sergey – 3AC.1, 6AC.1, 6AC.2, 8AC.3
Noble, Michael – 8UA.4
Nordmann, Stephan – 10BA.6
Norris, Gary – 10CA.6
Novosselov, Igor – 2AP.3, 8BA.7
Nowak, John B. – 4AQ.5
Noziere, Barbara – 5AC.7
Nunez, Lourdes – 2NP.5
O’Brien, Jason – 6EP.1
O’Brien, Rachel – 2AQ.4
O’Connor, David – 7BA.3, 8BA.13, 8BA.14, 8BA.15, 8BA.16
O’Shaughnessy, Patrick – 2CH.4, 5IM.3, 8BA.17
Oberreit, Derek – 8IM.17
Oda, Tomohiro – 5BB.2
Ogren, John – 11RA.4
Ogunro, Oluwaseun – 11RA.3
Oh, Sewon – 9BA.1
Okuda, Hiroshi – 2IM.8
Okuda, Tomoaki – 2CC.7
Olenius, Tinja – 2AP.8
Olfert, Jason S. – 12CA.5
Olin, Miska – 2NP.1
Oliveira, Maria – 5AQ.1
Olmedo, Laurent – 7BA.3
Olson, David – 10CA.6
Olson, Michael – 2CC.7
Omary, Mohammad – 5BB.6
Onasch, Timothy – 6AC.4, 6BB.2, 10BB.5, 11IM.3
Ondrecek, Jakub – 2IA.9, 2IA.10
Ondrusova, Klara – 8AC.2
Ong, Choon Nam – 6BB.6
Orasche, Jürgen – 1HA.5
Orlando, John – 5BB.2
Ortega, Amber – 10IM.2
Ortega, John – 2IA.6, 2NP.7
Ortega Colomer, Ismael Kenneth – 7NP.7
Osburn, Joanne J. – 8BA.9
Osmondson, Brian – 5IM.2
Ostro, Bart – 10SA.6
Otani, Yoshio – 4IM.7, 5CH.2
Ou, Qisheng – 5CH.4
Ouyang, Hui – 2AC.12
Oxford, Christopher – 4AQ.3, 6IM.6
Ozaslan, Nergis – 2IA.4
Öder, Sebastian – 1HA.5
Öhrwall, Gunnar – 8AC.10
Öztürk, Fatma – 2IA.4
Paasonen, Pauli – 7NP.1
Paatero, Jussi – 10SA.5
Paikoff, Sari – 2AP.6
Pakbin, Payam – 5PH.1
Palm, Brett – 2AC.6, 5AQ.1, 7AQ.1, 10IM.2
Pan, Li – 8AQ.1
Pan, Yong-Le – 4IM.6
Pandis, Spyros – 3AC.2, 3AC.3, 4AC.6, 8BB.1
Pankow, James F. – 8AQ.2, 8BB.3
Panqui, Edouard – 5AC.8
Pantelic, Jovan – 7BA.7
Papaneri, Amy – 8BA.11
Papapostolou, Vasileios – 5PH.5
Paprotny, Igor – 5CH.8
Paralovo, Sarah L. – 1HA.3
Parin, David – 6AC.6
Park, Jae Hong – 2CH.8, 8IM.11
Park, Ji Yeon – 2CC.1, 11RA.2
Park, Kihong – 2CC.1, 2UA.10, 8CO.6, 8RA.1, 10IM.4, 11RA.2
Park, Yong-Hee – 2IM.2, 2IM.3
Parvez, Fatema – 8SA.4
Parworth, Caroline – 8UA.3
Pasanen, Perti – 11BA.4
Pascaud, Aude – 1HA.7, 11SA.2
Passig, Johannes – 1HA.5
Patel, Sameer – 2BB.6, 10BB.4
Pathak, Harshad – 1AP.6
Paur, Hanns-Rudolf – 1HA.5
Peccia, Jordan – 3IA.3
Peischl, Jeff – 4AQ.5, 7AQ.4
Pekour, Mikhail – 4UA.7, 10BB.6
Peltier, Richard E. – 8PH.3
Penner, Joyce – 8CA.9
Pennington, M. Ross – 3UA.6
Perdrix, Esperanza – 1HA.7, 11SA.2
Pereira de Freitas Leal, André Henrique – 2IA.13
Pérez, N. – 11RA.1, 11SA.1, 11SA.5
Perez Pastor, Rosa – 2BB.5
Perraud, Veronique – 7NP.6
Perraudin, Emilie – 8AC.12
Perrington, Anne – 6IM.2, 7BA.4, 8CA.4, 11BA.2
Perrott, Phillipa – 8BA.2
Peters, Thomas – 2CH.8, 3AE.4, 8IM.11, 8SA.1
Petrenko, Mariya – 5BB.4
Petäjä, Tuukka – 3NP.1, 5IM.4
Pey, Jorge – 6AC.6, 11RA.1, 11SA.1, 11SA.5
Pham, Andrew – 2AC.14
Pham, Liem – 10CO.3
Phillips-Smith, Catherine – 8SA.2
Picquet-Varrault, Bénédicte – 8AC.12
Piedrahita, Ricardo – 2IA.6
Pierce, Jeffrey – 3CC.3, 3CC.6, 3NP.6, 4AQ.5, 7BB.3, 8CA.3, 8EP.3, 8RA.4, 9NP.1, 9NP.3
Pierce, Kyle – 8BA.13, 8BA.14, 8BA.15, 8BA.16
Pikridas, Michael – 6IM.3
Pincock, Samuel – 1CC.1
Pinho, Paulo – 2UA.6
Piot, Christine – 11SA.4
Poeschl, Ulrich – 3AC.4, 7BA.3, 7NP.4, 8BA.14, 8BA.15, 9PH.5, 10BA.6
Poinsignon, Quentin – 11RA.5
Pokhrel, Rudra – 10CA.5
Polidori, Andrea – 12SA.3
Pollack, Ilana – 4AQ.5, 4AQ.7, 7AQ.4
Pooley, Mark – 3AE.4
Pope, C. Arden – Plenary.2
Popescu-Junior, Ricardo – 1HA.2
Potgieter-Vermaak, Sanja – 1HA.3, 11CO.3, 11CO.5
Prather, Kimberly – 10BA.4
Pratsinis, Sotiris E. – 2AP.2
Pratt, Kerri – 2AQ.4, 8RA.5
Prenni, Anthony – 6EP.2
Presler-Jur, Paige – 2PH.4
Prestemon, Jeffrey – 5BB.6
Presto, Albert A. – 1UA.3, 1UA.5, 4UA.3, 6BB.3, 8UA.7, 11CO.1, 12CO.1, 12SA.1
Prévôt, Ande – 2AQ.5, 5AC.7, 11RA.1, 11SA.1, 11SA.5
Price, Derek – 2AC.2
Price, Owen – 2HA.1
Prikhodko, Vitaly – 10CO.4
Pringle, Kirsty – Plenary.1
Prisle, Nonne – 8AC.10
Prithiviraj, Bharath – 3IA.4
Procopio, Emily – 9UA.4
Prussin Il, Aaron – 8BA.8
Pu, Yang – 9UA.5
Pui, David Y. H. – 2AP.2, 2IA.1, 2IM.9, 5CH.4, 5IM.6, 8IM.5, 8IM.6, 8IM.13
Pujadas, Manuel – 2NP.5
Purvis-Roberts, Kathleen – 2AC.2
Pusede, Sally – 5PH.6
Pye, Havala – 6AQ.6, 7NM.5
Qi, Di – 7NM.2
Qian, Jing – 2IA.12
Qian, Yun – 4AC.3
Qiang, Zhang – 6PH.1, 8RA.2
Quel, Eduardo J. – 6PH.1
Quinn, Casey – 2PH.2
Quinn, Patricia – 8RA.3
Quintana, Penelope – 2UA.8, 8BA.4, 8CA.8
Quiros, David – 1UA.1, 10CO.3
Radischat, Christian – 1HA.5
Radney, James – 1CC.2, 2IM.12, 8AC.11, 12CA.4
Rager, Judith – 2PH.1, 4HA.4
Rainho, Claudia – 5PH.8
Raja, Suresh – 10SA.3
Ramagopal, Maya – 4HA.2
Ramírez, Joel – 2CH.4
Ramos, Manuel – 8CO.5, 10CO.5
Randall, Shirts – 2NP.3
Rangognio, Jérôme – 11RA.5
Rao, Yi – 1AC.5
Rasch, Phil – 11RA.3
Rasmussen, David – 1CC.3
Rasto, Brezny – 10CO.6
Rastogi, Ankit – 10SA.4
Rath, Jordan – 6IM.1
Rathanyake, Chathurika – 3UA.1, 8BA.17
Ratnesar-Shumate, Shanna – 4IM.2, 8BA.1, 9BA.5
Rattanavaraha, Weruka – 2AQ.6
Ravi, Aruna – 8PH.1
Raymond, Timothy – 3CC.4, 11IM.5
Raynor, Peter – 2CH.5
Realff, Matthew – 6PH.4
Reddington, Carly – Plenary.1
Regayre, Leighton – Plenary.1
Rehda, Ahmed – 1HA.5
Rehman, Wajih Ur – 2CC.1, 11RA.2
Reid, Jeffrey – 6BB.6
Reid, Jonathan P. – 3CC.1
Reis Neto, José M. – 1HA.1
Reischl, Georg – 4UA.6
Reitz, Paul – 6EP.5
Rempel, Denis – 11CO.3, 11CO.5
Ren, Ke – 2HA.4
Reponen, Tiina – 2CH.1, 3AE.5, 11BA.4, 12BA.1
Revenko, Gautier – 11SA.3
Rhode, David – 8CA.13
Riccobono, Francesco – 9NP.5
Rice, Joann – 12IM.4
Rich, David – 5PH.7
Richards-Henderson, Nicole K. – 2AC.13, 2AC.14
Richardson, Mathews – 7AQ.2, 7AQ.4, 8IM.2
Richters, Stefanie – 7NP.1
Riedel, Theran P. – 5AC.1
Riedi, Carlos A. – 1HA.1
Rieger, Paul – 4UA.3
Riemer, Nicole – 4UA.5
Riggio, Gustavo – 11IM.2
Riipinen, Ilona – 2AP.8, 3AC.5, 3CC.6, 4AP.2, 7NP.4, 9NP.1
Riva, Matthieu – 5AQ.6, 8AC.12, 8AC.13
Rmili, Badr – 6AC.6
Roberts, Daryl – 8IM.6
Roberts, James – 4AQ.7
Roberts, Paul – 3UA.3, 10CA.6
Robertson, William – 4UA.3
Robic, Pierre-Yves – 11RA.5
Robinson, Allen – Plenary.3, 1HA.4, 1UA.5, 4UA.3, 4UA.4, 6BB.2, 6BB.3, 8BB.3, 8CA.12, 8UA.7, 12CO.1, 12SA.1
Robinson, Ellis Shipley – 6BB.3, 8BB.3, 9AC.1
Robinson, Niall – 8BA.16
Robles, Jerome – 11IM.2
Rodes, Charles – 2BB.2
Rodriguez, Guillermo – 8BA.4
Rodriguez-Ventura, Guillermo – 2UA.8, 8CA.8
Rogak, Steven – 5CH.5, 10CO.5
Rogers, Raymond R. – 7AQ.5
Rohr, Annette – 6EP.3, 10BA.1
Rollins, Andrew – 6IM.2
Romay, Francisco – 4IM.2, 8IM.14
Romonosky, Dian – 8AC.3
Ronkko, Topi – 2NP.1
Rosário Filho, Nelson A. – 1HA.3
Rose, Clemence – 6AC.6
Rose, Jordon – 10IM.5
Roskamp, Melissa J. – 8AQ.2
Rothamer, David – 6EP.5
Roux, Jean-Maxime – 7BA.2, 7BA.3, 8BA.14
Royse, Kelli – 3IA.5
Rudich, Yinon – 6PH.1
Ruff, Gary – 11CO.2
Rusanen, Anton – 8BB.3
Russel, Mike – 2IA.6
Russell, Armistead – 2AQ.3, 4UA.2, 5BB.7, 5PH.5, 6PH.4, 8AQ.5, 8SA.3, 8SA.5, 12IM.3, 12SA.5
Russell, Lynn – 8RA.3, 11RA.3
Ruuikanen, Taina – 5AC.8
Ryerson, Thomas – 4AQ.5, 4AQ.7, 7AQ.4
Saari, Sampo – 7BA.3, 8BA.14, 8BA.15, 11BA.4
Sabaliauskas, Kelly – 1UA.2, 8UA.4
Saffari, Arian – 10BB.1
Saffaripour, Meghdad – 10CO.6
Sagona, Jessica – 4HA.2
Sagripanti, Jose-Luis – 2HA.8
Saha, Provat – 6AQ.5, 10CA.2
Sahay, Keshav – 4UA.3
Saide, Pablo – 7AQ.5
Sakai, Stephen – 6EP.5
Sakamoto, Kimiko – 7BB.3
Sakurai, Hiromu – 3AE.2
Salam, Abdus – 6PH.1
Salameh, Dalia – 11RA.1, 11SA.5
Saleh, Rawad – 6BB.3, 8BB.3, 8CA.12
Saliba, Georges – 8CA.12
Saliba, Najat A. – 2HA.10, 2UA.3
Salines, Georges – 8BA.13, 8BA.14
Salman, Rola – 2HA.10
Salmela, Anniina – 11BA.4
Salvador, Pedro – 2BB.5
Samara, Constantini – 10BB.1
Samburova, Vera – 7BA.5, 8BB.4, 8CA.10
Sanchez, Javier – 1AC.4
Sanchez, Marianna Santos – 11AC.4
Sanchez de la Campa, Ana – 2BB.5
Sanchez, Javier – 1AC.4
Sanyal, Swarnali – 4UA.5
Sapcariu, Saen – 1HA.5
Sarda-Esteve, Roland – 7BA.2, 7BA.3, 8BA.13, 8BA.14, 8BA.15
Sareen, Neha – 6AQ.1
Satish, Swathi – 2IM.9
Saurabh, Singh – 7NM.2
Sauvage, Stéphane – 11SA.2
Sayama, Célia – 1HA.1
Saylor, Rick – 8AQ.1, 12RA.2
Scarino, Amy Jo – 7AQ.5, 8AQ.3
Schaap, Peter – 11BA.3
Schauer, James – 2CC.7, 2UA.3, 8IM.12, 10BB.1, 10SA.2
Scheckman, Jacob – 2IM.13
Scheinbeim, Jerry – 7BA.6
Schichtel, Bret – 6BB.5, 6EP.2
Schiller, Sascha – 12CO.5
Schilling, Katherine – 3AC.4
Schmid, Beat – 4UA.7, 10BB.6
Schmid, Hans-Joachim – 12CO.5
Schmit, Stephanie – 8RA.5
Schnelle-Kreis, Jürgen – 1HA.5
Schnitzler, Elijah G. – 12CA.5
Schoenitz, Mirko – 12BA.1
Shepson, Paul – 2AQ.4
Sheyko, Benjamin – 1CC.6
Shigeta, Masaya – 8NM.4
Shihadeh, Alan – 2HA.9, 2HA.10, 2UA.3
Shilling, John – 4UA.7, 10BB.6
Shiraiwa, Manabu – 3AC.4, 7NP.4, 9PH.5
Shook, Michael – 2CC.3, 8AQ.3, 8AQ.4, 8CO.3
Short, Daniel – 8EP.2, 10CO.3
Shou, Lin – 2IM.7
Shrimali, Ravi – 2BB.3
Shrivastava, ManishKumar – 4AC.3, 11AC.3
Shu, Shi – 9UA.1, 9UA.5
Siddique, Azhar – 3UA.4
Siddiqui, Yunus – 2HA.7
Siegel, Jeffrey – 3IA.5, 3IA.6
Siegrist, Karen – 12CO.3
Siejack, Richard – 2AC.8, 2AC.9
Sierra, Raymond – 1AP.6
Sierra-Hernández, Roxana – 5AQ.8
Sillman, Sanford – 8CA.9
Silva, Philip – 2AC.2
Silva, Thiago O. B. – 11CO.3, 11CO.5
Silverman, Erin – 4HA.3
Simoes de Sa, Suzane – 2AC.6, 5AQ.1, 7AQ.1
Singer, Sherwin – 4AP.4
Singh, Ashish – 2CC.5, 3AE.4, 3UA.1, 12RA.4, 12RA.5
Singh, Sujeeta – 8IM.18
Sioutas, Constantinos – 2UA.3, 5PH.1, 8IM.12, 10BB.1, 10SA.6
Sipilä, Mikko – 6AC.3, 7NP.1
Sippola, Olli – 1HA.5
Sivakumar, Venkataraman – 1CC.4
Sivaprasakam, Vasanthi – 1AP.2
Sive, Barkley – 6EP.2
Skloz, Martin – 1HA.5
Skog, Kate – 7CA.2
Slowik, Jay – 5AC.7
Smidt, Hauke – 11BA.3
Smith, Amy – 10BB.5
Smith, Damon – 8IM.18
Smith, James N. – 2NP.7
Smith, Jeremy – 1AC.2
Smith, Paul – 8IM.15
Smolander, Sampo – 8BB.3
Smullin, Annalisa – 2HA.5
Snider, Graydon – 6PH.1
Soares e Silva, Tadeu Leonardo – 2AC.3
Sodeau, John – 7BA.3, 8BA.13, 8BA.14, 8BA.15, 8BA.16
Sofowote, Uwayemi – 10SA.4
Sokol, Joel – 6PH.4
Solomon, Arun – 6EP.5
Solomon, Paul A. – 5CH.8, 8BB.2, 10SA.2
Somerville, Richard – 8RA.3
Soong, Su-tzai – 8PH.5
Sorensen, Chris – 1AP.1, 1AP.7, 2AP.3, 2AP.4, 2AP.5, 4AP.3
Sorloacia-Hickman, Nicoleta – 5CH.6
Souza, Carolina – 10IM.6
Souza, Rodrigo A. F. – 2AC.6, 5AQ.1, 12CA.1
Soy, Nurseli – 2IA.4
Spak, Scott N. – 3AE.4, 3UA.1
Sparks, Gary – 8BA.11
Spencer, Chance – 8UA.2
Spielman, Steven – 5IM.5, 6IM.3, 8IM.16, 9IM.4, 9IM.5
Spielvogel, Juergen – 12IM.5
Springston, Stephen – 7CA.1
St. Clair, Jason – 4AQ.4, 7NP.3
Stabile, Luca – 4HA.1
Staimer, Norbert – 6AC.2
Stan, Claudiu – 1AP.6
Stangl, Chris – 8CA.11
Stanier, Charles – 2CC.5, 3AE.4, 3UA.1, 12RA.4, 12RA.5
Stanley, Warren – 8BA.16
Stark, Harald – 6AC.3
Stavroulas, Iasonas – 8BB.1
Steady, Scott – 2IA.7
Steffens, Jonathan – 9UA.3
Steiner, Gerhard – 4UA.6
Stengel, Benjamin – 1HA.5
Stephens, Brent – 6PH.6
Stevens, Robin – 4AQ.5, 9NP.3
Stevenson, Eric – 8PH.5
Stewart, Kathleen – 8BB.2
Stewart, Mark – 6EP.5, 10CO.4
Stinson, Jake – 3NP.5
Stipe, Christopher – 2AP.3
Stockwell, Chelsea – 1CC.5, 6BB.4
Stoltz, Brian – 2AC.4
Stone, Elizabeth – 3AE.4, 3UA.1, 5AQ.4, 6BB.4, 8BA.17, 8BB.5
Storey, John – 10CO.4
Stratmann, Frank – 7NP.1
Streibel, Thorsten – 1HA.5
Stuart, Amy L. – 2PH.3
Su, Hang – 7BA.3, 10BA.6
Su, Huey-Jen – 8BA.5
Su, Yushan – 8UA.4
Subedi, Nava – 11IM.1
Subramanian, R. – 8CA.12
Sueper, Donna – 12SA.2
Sul, Kyung – 2IA.8
Sul, Young Tae – 8IM.5
Sullivan, Amy P. – 6BB.5, 6EP.2, 7BB.5, 7CA.2, 8AC.4
Sullivan, Ryan – 3CC.1, 6BB.3, 8BB.3, 8CA.12
Sullivan, Sylvia – 1CC.6
Sultana, Camille – 10BA.4
Sumlin, Benjamin – 11IM.2
Sumner, Andrew – 1AC.5
Sumru Unlüevcek, Hediye – 2IA.4
Sun, Yele – 3UA.2
Sunada, Craig – 8IM.15
Sunwoo, Young – 8RA.2
Suresh, Sriram – 5PH.5
Surratt, Jason – 1AC.1, 2AC.8, 2AQ.6, 5AC.1, 5AQ.3, 5AQ.6, 5PH.4, 6AQ.6, 8AC.13, 9PH.3
Suski, Kaitlyn – 10BA.4
Susz, Anna – 10IM.5
Swanson, Aaron – 2CC.3
Swanson, Jacob – 2IM.9
Sweeney, Dan – 10BB.5
Swihart, Mark – 7NM.2
Sylvestre, Alexandre – 11RA.1, 11SA.3, 11SA.5
Szidat, Soenke – 2AQ.5, 11RA.1
Tadano, Yara S. – 1HA.1, 1HA.3, 11CO.3, 11CO.5
Takahama, Satoshi – 8CA.2, 12CA.2
Talbot, Nicholas – 2IA.9, 2IA.10
Talbott, Evelyn – 2PH.1, 4HA.4
Talgo, Kevin – 5BB.6
Talih, Soha – 2HA.10
Tamargo, Jeremy – 9UA.4
Tan, Jiaojie – 9IM.1
Tan, Yi – 1UA.5, 8UA.7
Tan, Zhongchao – 2CH.2
Tanenbaum, Shelley – 7AQ.6
Tang, Ping – 1AC.3, 1AC.6, 2AC.5
Tang, Shida – 8IM.1
Tanis, Berfin – 2IA.4
Tanner, Roger – 5AQ.3, 12RA.3
Tanrikulu, Saffet – 8PH.5
Tarlov, Michael – 9IM.1
Tasoglou, Antonios – 3AC.2
Taylor, Jonathan – 7BB.3, 7BB.4
Telg, Hagen – 6IM.2
Temime-Roussel, Brice – 6AC.6, 11RA.1, 11SA.1, 11SA.5, 12SA.2
Teng, Alex – 7NP.3
Tessum, Christopher – 6PH.3
Thayer, Mitchell – 4AP.4
Theodore, Alex – 2IM.7
Therkorn, Jennifer – 7BA.6
Thibaudon, Michel – 7BA.3, 8BA.13, 8BA.14
Thielen, Peter – 12BA.4
Thomas, Jikku – 7NP.5
Thomas, Mike – 12CO.3
Thomas, Valerie – 6PH.4
Thompson, Drew – 8IM.13
Thompson, Ryan – 10BB.3
Thomson, Errol – 2HA.7
Thomson, Kevin – 10CO.6
Thornberry, Troy – 6IM.2
Thornburg, Jonathan – 2AE.2, 2BB.2, 8IM.10, 12BA.3
Thorne, Peter – 8BA.17
Thornhill, Kenneth – 2AQ.1, 2CC.3, 8AQ.3, 8AQ.4, 8CO.3
Thornton, Joel A. – 4AQ.7, 5AC.1, 8SA.6
Tian, Geng – 4HA.6
Tian, Yilin – 2IA.8
Tiitta, Petri – 7BB.6
Tinta, Tinkara – 10BA.4
Tkacik, Daniel S. – 4UA.3, 6BB.3, 8BB.3
Tobo, Yukata – 10BA.4
Tombach, Ivar – 7AQ.6
Tomlinson, Jason – 4UA.7, 10BB.6
Topinka, Jan – 2UA.4
Trainer, Michael – 4AQ.5, 5AQ.2
Tran, Cuong – 8PH.5
Travis, Katherine – 7BB.4
Tripathi, S.N. – 6PH.1
Truong, Tin – 4UA.3
Tsai, Chuen-Jinn – 4AP.7
Tsai, Hsiu-Wen – 4HA.3
Tsiao, Ta-Chih – 4IM.3
Tsibart, Anna – 8CA.10
Tsouris, Costas – 8EP.3
Tsovianov, Alexander – 5IM.8
Tu, Peijun – 2AC.11
Tu, Wei-Yen – 8BA.5
Tuet, Wing-Yin – 1AC.4
Turgeon, Nathalie – 8BA.2, 11BA.1
Turkevich, Leonid – 2AP.9
Turner, Jane – 3IA.4
Turner, Jay – 1UA.6, 4AQ.3, 7CA.6, 12SA.4
Turpin, Barbara – 2IA.5, 3CC.2, 5AC.5, 6AQ.1, 7CA.2, 8AC.4
Uin, Janek – 7NP.3
Urban, David – 11CO.2
Urbanski, Shawn P. – 7BB.4, 7BB.5
Urch, Bruce – 8AC.6
Vakkari, Ville – 7BB.6
Val Martin, Maria – 5BB.4
Valdivia, Gonzalo – 1IA.7, 10SA.1
Valebona, Fabio B. – 11CO.3, 11CO.5
valsaraj, Kalliat – 2AC.14
van Donkelaar, Aaron – 6PH.1
Van Grieken, René – 1HA.1, 1HA.3
Van Schooneveld, Gary – 8IM.17
van Zyl, Pieter G. – 7BB.6
Vanderpool, Robert – 8IM.10
Varner, Mychel E. – 7NP.6
Vasilakos, Petros – 7AQ.2, 8AQ.5, 8EP.3
Vaughn, David – 3UA.3
Vaziri, Nosratola – 6AC.2
Vehkamäki, Hanna – 2AP.8
Veijalainen, Anna-Maria – 11BA.4
Veillette, Marc – 8BA.2
Velez-Lopez, Ernesto – 2UA.8
Venter, Andrew D. – 7BB.6
Veres, Patrick – 4AQ.7, 6BB.3
Verlinden, Emmanuel – 11SA.4
Verma, Vishal – 2AQ.3, 5PH.1, 5PH.3, 5PH.5, 8PH.2, 8PH.3, 8PH.4, 9PH.4
Viegas, Juarez – 5AQ.1
Vieira, Rodrigo – 2UA.6
Viisinen, Yro – 10SA.5
Villela, Mark – 10CO.3
Villenave, Eric – 8AC.12
Vincent, Renaud – 2HA.7
Vizenor, Ashley – 3CC.5
Vlachokostas, Christos – 10BB.1
Vodicka, Petr – 7CA.7
Volckens, John – 2PH.2, 3AE.1, 6IM.1
Volkamer, Rainer – 5AC.7
Voutsas, Dimitra – 10BB.1
Vu, Diep – 3CC.3, 8EP.2
Wada, Jiro – 8BA.10
Wagner, Matthew – 5CH.3
Wagner, Nick – 4AQ.5, 7AQ.1, 7AQ.2, 7AQ.4, 8IM.2, 10CA.5
Wagner, Paul E. – 4AP.2
Wagner, Robert – 7CA.7
Wagner, Robert – 4UA.6
Wagner, Zdenek – 7CA.7
Wagstrom, Kristina – 8SA.4
Waked, Antoine – 10BA.2, 11RA.5, 11SA.4
Walenga, Ross – 4HA.6
Walker, Jim – 3CC.1
Walker, Michael – 4AQ.3, 5AQ.7, 7CA.6, 12CA.3
Wallace, H. William – 4AQ.6
Wallace, James S. – 8CO.5, 10CO.5
Wallis, Christopher – 2HA.5
Walters, Justin – 7AQ.6
Walz, Keeneth – 2CC.7
Wang, Bingbing – 2AQ.4, 2CC.9, 5AC.4
Wang, Chuji – 4IM.6
Wang, Daniel – 8UA.4
Wang, Dongbin – 8IM.12
Wang, Jian – 3NP.1, 4UA.7, 5IM.4, 6IM.3, 7CA.1, 10BB.6
Wang, Jing – 2AP.2, 5IM.6
Wang, Jon M – 1UA.2, 1UA.4, 8UA.4
Wang, Jun – 5BB.3
Wang, Jun – 2AE.1
Wang, Lin – 2NP.4
Wang, Mei – 2CH.5
Wang, MingYi – 2NP.4
Wang, Ningxin – 3AC.3
Wang, Qiang – 5CH.1
Wang, Siyuan – 5AC.7
Wang, Wei-Ning – 1IA.6, 7NM.7
Wang, Xiaoliang – 8CA.10, 8CA.13, 10CO.3, 11IM.2
Wang, Xinming – 6AC.5, 8CA.5
Wang, Yan – 11AC.4
Wang, Yang – 6IM.6, 7NM.1, 7NM.3
Wang, Ying – 8PH.4
Wang, Yuli – 4AP.3
Wang, Zifa – 3UA.2
Wang, Zuocheng – 4HA.2
Ward, Barbara – 8BB.6
Ward, Michael – 2AC.13
Warneke, Carsten – 4AQ.7, 5AQ.2, 7AQ.4
Warner, Andrew – 8UA.4
Warner, James – 5CH.4
Washenfelder, Rebecca – 7AQ.1, 7AQ.7
Watson, John – 8CA.10, 8CA.13, 11IM.2
Watts, Adam – 8BB.4, 8CA.10
Watts, Laurel – 6IM.2
Waxman, Eleanor – 5AC.7
Weagle, Crystal – 6PH.1
Weber, Rodney – 2AQ.3, 4AQ.3, 5AQ.5, 5PH.3, 5PH.5, 6AQ.2, 6AQ.3, 7CA.6, 8PH.2, 8PH.3, 8PH.4, 9PH.4

Weinstock, Lewis – 12IM.4

Weise, David R. – 7BB.4, 7BB.7

Weiss, Maximilian – 12IM.5

Welch, William A. – 8EP.1

Welti, André – 4AQ.5, 5AQ.2, 7AQ.2, 7AQ.4

Wenger, John – 4UA.5

Wennberg, Paul – 1AC.1, 2AC.4, 4AQ.4, 7NP.3

Werner, Josephina – 8AC.10

Wernis, Rebecca – 8IM.3

Westerhoff, Paul – 8AC.9

Westervelt, Daniel – 2CC.8, 3NP.6

Wexler, Anthony – 2HA.5, 4AC.1

Weyant, Cheryl – 10BB.3

Wheeler, Elizabeth K. – 8BA.9

Wheeler, Michael – 8RA.4

White, Luc – 8UA.4

White, Richard – 5CH.8

White, Scott – 12BA.5

Whybrew, Lauren – 8SA.6

Wiedenhofer, Alfred – 8IM.15

Wiedinmyer, Christine – 5BB.2

Wiegel, Aaron – 2AC.10

Wiener, Russell – 12BA.3

Wigder, Nicole – 7BB.1, 7BB.2

Wild, Robert – 4AQ.7

Williams, Brent – 4AQ.3, 5AQ.7, 6IM.6, 7CA.6, 10BB.4, 12CA.3

Williams, Garth – 1AP.6

Williams, Leah – 6AC.4, 6BB.2

Williams, Rob – 4UA.1

Williams, Ron – 12IM.4

Willis, Robert – 7NM.5

Willitsford, Adam – 12CO.3

Wilson, Jacqueline – 10CO.4, 10IM.3, 11AC.1, 11AC.3
Wilson, Kevin – 2AC.10, 2AC.13
Wimmer, Daniela – 3NP.1, 5IM.4
Winkler, Paul M. – 4AP.2
Winstead, Edward – 2AQ.1, 2CC.3, 8AQ.3, 8AQ.4, 8CO.3
Wisthaler, Armin – 4AQ.4
Witherspoon, Carlton – 8IM.10
Wogan, Lewis – 12BA.2
Wojcik, Michael – 12IM.1
Wold, Cyle – 7BB.4
Wolf, Sue – 6IM.4, 7NM.6
Wolfe, Daniel – 8IM.2
Wolfe, Glenn – 5AQ.2
Wommack, Reed – 4AQ.7
Wonaschuetz, Anna – 4UA.6, 7CA.7
Woo, Joseph – 1AC.5
Woo, Jung-Hun – 8RA.2
Wooldridge, Chloe – 3IA.2
Woolsey, David – 5CH.8
Worsnop, Douglas – 2AQ.6, 6AC.3, 6AC.4, 6BB.2, 7BB.6, 7NP.1, 10BB.5
Wortham, Henri – 11SA.3, 12SA.2
Worton, David – 8IM.3
Wright, Jeff – 12SA.3
Wu, Chang-Yu – 2IM.7, 4HA.3, 4HA.7, 5CH.6, 9BA.1
Wu, Jiewei – 12CA.3
Wu, Yue – 8AC.5
Wurth, Marilyn – 8IM.1
Wyslouzil, Barbara – 1AP.6, 4AP.4
Xia, Tian – 8CA.1
Xiao, Shan – 2NP.4
Xiu, Aijun – 5BB.6
Xu, Bin – 1IA.2
Xu, Jianzhong – 7CA.1
Xu, Jie – 4HA.7
Xu, Li – 8RA.3
Xu, Lu – 1AC.4, 4UA.2, 5AQ.5, 6AC.4, 6AQ.2, 6AQ.3, 8AQ.5, 9PH.4
Xu, Ying – 3IA.6
Xu, Yisheng – 3NP.4
Xu, Zhencheng – 2HA.4
Xue, Jian – 1UA.1, 10CO.3
Xue, Tao – 2PH.1
Yadama, Gautam – 2BB.3
Yalin, Azer – 6IM.1
Yamada, Hiroyuki – 2IM.8
Yamamoto, Carlos I. – 1HA.3, 11CO.3, 11CO.5
Yan, Caijing – 7CA.5, 8CA.5
Yan, Jing – 7BA.7
Yang, Dongmei – 5BB.6
Yang, Jiann – 11CO.2
Yang, Letao – 2AE.3
Yang, Ting – 3UA.2
Yang, Xin – 2NP.4
Yang, Xufei – 7BA.5, 11IM.2
Yao, Maosheng – 4HA.7
Yatavelli, Laxmi Narasimha – 8CA.10, 8CA.13
Yatavelli, Laxmi Narasimha – 11IM.2
Yazdani Boroujeni, Behdad – 8UA.2
Ye, Jianhuai – 8AC.6
Ye, Penglin – 9AC.1
Yeager, John – 8BA.1, 9BA.3
Yee, Lindsay – 5AQ.1, 5AQ.6, 8IM.3
Yeh, Hsi-Wei – 4HA.5
Yermakov, Michael – 2CH.1, 3AE.5, 12BA.1
Yeung, Ming Chee – 8IM.9
Yiacoumi, Sotira – 8EP.3
Yin, Yan – 3UA.2
Ying, Qi – 7CA.4
Yli-Juuti, Taina – 7NP.4, 9NP.1
Yokelson, Robert J. – 1CC.5, 5BB.2, 6BB.2, 6BB.3, 6BB.4, 7BB.4, 7BB.5, 8BB.3
Yon, Jerome – 1AP.5
Yoon, Young Jun – 8RA.1
Yoshitake, Takashi – 5CH.2
You, Rian – 9IM.2
You, Yi – 5AQ.8, 7NP.3
Young, Dominique – 6AC.4
Yu, Fangqun – 3NP.4, 4AC.5, 9NP.4
Yu, Ge – 4AQ.4
Yu, Haofei – 2PH.3
Yu, Il Je – 2IM.3
Yu, Jian Zhen – 5AC.7, 6AC.5
Yu, Liya – 6BB.6
Yu, Lu – 1AC.2
Yu, Nu – 9UA.1
Yu, Ruijie – 10BB.4
Yuan, Zeng-guang – 11CO.2
Yuasa, Hisashi – 5CH.2
Yurteri, Caner – 2HA.1, 2PH.5
Zachariah, Michael – 4AP.6, 8IM.8, 9IM.1, 9IM.2
Zahnisser, Mark – 6AC.4
Zangmeister, Christopher – 1CC.2, 2IM.12, 8AC.11, 12CA.4
Zavala, Miguel – 2UA.8, 8BA.4, 8CA.8
Zdimal, Vladimir – 2IA.9, 2IA.10, 7CA.7
Zeb, Jahan – 3UA.4
Zecha, Gudrun – 7CA.7
Zelenyuk, Alla – 4AC.3, 6EP.5, 10CO.4, 10IM.3, 11AC.1, 11AC.3
Zhai, Xinxin – 8SA.3
Zhang, Feng – 5BB.3
Zhang, Haofei – 2AC.8
Zhang, Hongliang – 1CC.3, 2CC.7
Zhang, Jingjie – 4IM.1
Zhang, Jinwei – 8AC.9
Zhang, K. Max – 7NM.5, 9UA.3
Zhang, Mang – 4UA.3
Zhang, Qi – 1AC.2, 7BB.1, 7BB.2, 7CA.1, 8UA.3
Zhang, Wenxian – 6PH.4
Zhang, Xiaolu – 8UA.3
Zhang, Xuan – 1AC.1, 2AC.4, 9AC.2
Zhang, Yanlin – 2AQ.5, 11RA.1
Zhang, Yaping – 4AQ.3, 5AQ.7, 7CA.6
Zhang, Yuanxun – 9UA.2
Zhang, Yue – 11AC.4, 12CA.1
Zhang, Zhenfa – 1AC.1, 2AC.8, 5AC.1, 5AQ.3, 5AQ.6, 5PH.4, 8AC.13
Zhang, Zhenzhong – 4IM.3
Zhao, Chun – 4AC.3
Zhao, Jun – 3NP.3
Zhao, Yue – 5AC.6
Zhao, Yunliang – 4UA.4, 12CO.1
Zhao, Zhan – 1CC.3
Zhen, Huajun – 9BA.4
Zheng, Mei – 1IA.4, 7CA.5, 8CA.5
Zheng, Zhongqing – 10CO.3
Zhou, Shan – 7BB.1, 7BB.2, 7CA.1, 8UA.3
Zhou, Shouming – 1IA.5
Zhou, Yong – 6EP.2
Zhou, Yue – 5CH.7
Zhu, Yifang – 1IA.1, 1IA.4, 9UA.1, 9UA.5
Zielinska, Barbara – 7BA.5, 8CA.10
Ziemba, Luke – 2AQ.1, 2CC.3, 4AQ.2, 8AQ.3, 8AQ.4, 8CO.3
Zikova, Nadezda – 7CA.7
Zimmerman, Naomi – 1UA.2, 1UA.4, 8CO.5, 8UA.4
Zimmermann, Ralf – 1HA.5
Ziv-El, Michal – 3IA.2
Zordan, Christopher A. – 3UA.6
Zou, Zhuanglei – 4HA.7
Zuo, Xiaochen – 4AQ.3
A List of Aerosol-Related Acronyms for the 2014 Conference

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>aerodynamic diameter</td>
</tr>
<tr>
<td>AMS</td>
<td>aerosol mass spectrometer</td>
</tr>
<tr>
<td>APS</td>
<td>aerodynamic particle sizer</td>
</tr>
<tr>
<td>BC</td>
<td>black carbon</td>
</tr>
<tr>
<td>CCN</td>
<td>cloud condensation nuclei</td>
</tr>
<tr>
<td>CFD</td>
<td>computational fluid dynamics</td>
</tr>
<tr>
<td>CIMS</td>
<td>chemical ionization mass spectrometer</td>
</tr>
<tr>
<td>CMAQ</td>
<td>community multiscale air quality</td>
</tr>
<tr>
<td>CPC</td>
<td>condensation particle counter</td>
</tr>
<tr>
<td>CPMA</td>
<td>centrifugal particle mass analyzer</td>
</tr>
<tr>
<td>CS</td>
<td>catalytic stripper</td>
</tr>
<tr>
<td>DMA</td>
<td>differential mobility analyzer</td>
</tr>
<tr>
<td>DPM</td>
<td>diesel particulate matter</td>
</tr>
<tr>
<td>DRW</td>
<td>discrete random walk</td>
</tr>
<tr>
<td>EC</td>
<td>elemental carbon</td>
</tr>
<tr>
<td>EDX</td>
<td>energy dispersive x-ray analysis</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>ENP</td>
<td>engineered nanoparticle</td>
</tr>
<tr>
<td>FBAR</td>
<td>film bulk acoustic resonator</td>
</tr>
<tr>
<td>FBC</td>
<td>fuel borne catalyst</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatograph</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatograph-mass spectrometer</td>
</tr>
<tr>
<td>HEPA</td>
<td>high-efficiency particulate air</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating ventilation air conditioning</td>
</tr>
<tr>
<td>HVC</td>
<td>heterogeneous vaporization condenser</td>
</tr>
<tr>
<td>ICP</td>
<td>inductively coupled plasma</td>
</tr>
<tr>
<td>IN</td>
<td>ice nuclei</td>
</tr>
<tr>
<td>LA</td>
<td>laser ablation</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>MEMS</td>
<td>micro-electro-mechanical system</td>
</tr>
<tr>
<td>MMAD</td>
<td>mass median aerodynamic diameter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometer</td>
</tr>
<tr>
<td>OA</td>
<td>organic aerosol</td>
</tr>
<tr>
<td>OC</td>
<td>organic carbon</td>
</tr>
<tr>
<td>OPC</td>
<td>optical particle counter</td>
</tr>
<tr>
<td>OPD</td>
<td>open plate deposition</td>
</tr>
<tr>
<td>OPM</td>
<td>organic particulate matter</td>
</tr>
<tr>
<td>PAM</td>
<td>potential aerosol mass</td>
</tr>
<tr>
<td>PAS</td>
<td>photoacoustic spectroscopy</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>PMx</td>
<td>particulate matter having AD ≤ x microns</td>
</tr>
<tr>
<td>POA</td>
<td>primary organic aerosol</td>
</tr>
<tr>
<td>ppm, ppb, ...</td>
<td>parts per million, ...billion, ... etc.</td>
</tr>
<tr>
<td>PSL</td>
<td>polystyrene latex</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>sd</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>SMPS</td>
<td>scanning mobility particle sizer</td>
</tr>
<tr>
<td>SN</td>
<td>smoke number</td>
</tr>
<tr>
<td>SOA</td>
<td>secondary organic aerosol</td>
</tr>
<tr>
<td>Stk</td>
<td>Stokes number</td>
</tr>
<tr>
<td>SVOC</td>
<td>semi volatile organic compound</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscope</td>
</tr>
<tr>
<td>TEOM</td>
<td>tapered element oscillating microbalance</td>
</tr>
<tr>
<td>TOF</td>
<td>time of flight</td>
</tr>
<tr>
<td>UFP</td>
<td>ultrafine particle</td>
</tr>
<tr>
<td>URM</td>
<td>unresolved material</td>
</tr>
<tr>
<td>VBS</td>
<td>volatility basis set</td>
</tr>
<tr>
<td>VFAS</td>
<td>variable flow rate aerosol sampler</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compounds</td>
</tr>
<tr>
<td>XPS</td>
<td>x-ray photoelectron spectroscopy</td>
</tr>
</tbody>
</table>
AAAR FUTURE CONFERENCES

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Hyatt Regency Minneapolis</td>
<td>October 12-16, 2015</td>
</tr>
<tr>
<td></td>
<td>Minneapolis, MN</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Oregon Convention Center</td>
<td>October 17-21, 2016</td>
</tr>
<tr>
<td></td>
<td>Portland, OR</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Raleigh Convention Center</td>
<td>October 16-20, 2017</td>
</tr>
<tr>
<td></td>
<td>Raleigh, NC</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>INTERNATIONAL AEROSOL CONFERENCE</td>
<td>September 2-7, 2018</td>
</tr>
<tr>
<td></td>
<td>America’s Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO</td>
<td></td>
</tr>
</tbody>
</table>

AAAR 2014 AWARD PRESENTATIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Award Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, October 21</td>
<td>Kenneth T. Whitby Award Presentation</td>
</tr>
<tr>
<td>Wednesday, October 22</td>
<td>David Sinclair Award Presentation</td>
</tr>
<tr>
<td></td>
<td>Thomas T. Mercer Prize Presentation</td>
</tr>
<tr>
<td>Thursday, October 23</td>
<td>Sheldon K. Friedlander Award Presentation</td>
</tr>
<tr>
<td></td>
<td>AAAR Fellows Presentation</td>
</tr>
<tr>
<td>Friday, October 24</td>
<td>Student Poster Competition Award Presentations</td>
</tr>
</tbody>
</table>
American Association for Aerosol Research
34th Annual Conference

SAVE THE DATE
October 12-16, 2015
Hyatt Regency
Minneapolis, Minnesota, USA
Centrifugal Particle Mass Analyzer
Classifies aerosol particles by mass: charge ratio.

Forms an aerosol mass standard
(with electrometer & unipolar charger.)

\[m_{\text{total}} = M \times \text{indicated electrometer concentration} + \text{zero charge correction} \]

(Symonds et al., AS&T 47:8 i–iv)

Unipolar Diffusion Aerosol Charger
Places a high level of charge on aerosol particles.

Use in mass standard above.

Electrostatic Precipitator
Selectively removes charged particles from an aerosol flow

Use in mass standard above.

+1 (800) 416 9304
sales@cambustion.com

Cambustion
www.cambustion.com
WHAT'S NEW FROM TSI

Electro spray Aerosol Generator
Model 3482
- Generates monodisperse particles 2-100 nm in diameter
- Nonradioactive Soft X-Ray Neutralizer included
- Easy-to-use controls to optimize Taylor cone

New Nanoparticle Emissions Tester Model 3795
- Portable instrument for measurement of in-vehicle diesel after treatment performance
- Built-in dilution and catalytic stripper for a one-box test solution
- Direct measurement of particle number concentrations up to 5 x 10^6 particles/cm³ using proven CPC technology

Fast Scanning SMPS Model 3938
- Very fast scans <10 seconds
- High resolution 1% accuracy
- Component self-discovery and auto-configuration
- Full integration with new Soft X-Ray Neutralizer
- Touch-screen operation without computer attached

+ Students/Postdocs: Answer a short survey to earn a $10 gift card!
+ Visit us at booth 201 and 203